CO-PO-PSO ATTAINMENT HANDBOOK

Department of Civil Engineering
B.Tech. CE (2020-24) Batch

GITA AUTONOMOUS COLLEGE, BHUBANESWAR July 2024

Vision of Institution

To foster prosperity through technological advancement by promoting education, innovation, and collaborative research, and to emerge as a globally renowned premier technical institution.

Mission of Institution

- 1. To impart high quality professional education to students worldwide, fostering innovation, technological advancement, discipline, effective communication skills, and strong moral values.
- **2.** To provide a broad-based education that ensures the holistic development of students.
- **3.** To leverage expertise in science, technology, and management to deliver comprehensive training in visualizing, synthesizing, and executing projects.
- **4.** To nurture a spirit of entrepreneurship and innovation among students.
- **5.** To undertake sponsored research and offer consultancy services in industrial, educational, and other relevant domains.
- **6.** To promote healthy practices such as community service, outreach initiatives, and innovative projects for societal benefits.

Vision of Department

The Department of Civil Engineering endeavors to be recognized for its outstanding academics and research, producing competent and disciplined Civil Engineers, who would be innovative, entrepreneurial and able to take challenges in advanced fields of Infrastructural Engineering.

Mission of Department

- 1. Offering State of the Art Under Graduate and Post Graduate Programme.
- 2. Developing professionalism in our Civil Engineering graduates to take up challenges in competitive world.
- **3.** Undertaking collaborative projects for interaction of academia and industries emphasizing on R&D activities.
- **4.** Developing human intellectual capability to its fullest potential in our students to shoulder the social responsibility for upliftment of under privileged.

PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

- **PEO1:** Our graduates will apply their knowledge and skills to succeed in engineering career and/or obtain an advanced degree.
- **PEO2:** Our graduates will apply basic principles of engineering in various practical fields to meet customer business objectives and/or productively engage in research.
- **PEO3:** Our students will be able to apply creative thinking to design Civil engineering equipment's and processes including interdisciplinary technologies.
- **PEO4:** Our graduates will function ethically and responsibly and will remain informed and involved fully in their profession and in society.
- **PEO5:** Our students will be able to communicate well with others to share the ideas and to cooperate, thus establishing the leadership to manage the organization effectively.

PROGRAM OUTCOMES (POs)

- **PO1.** Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems in Civil and Construction Engineering.
- **PO2. Problem analysis:** Identify, formulate, review research literature, and analyze complex Structural engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- **PO3. Design/development of solutions:** Design solutions for complex Civil and Structural Engineering problems and design of various structural components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- **PO4.** Conduct investigations of complex problems: Use research-based knowledge and research methods related to Civil Engineering including laboratory experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- PO5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern Civil, Structural and construction Engineering and related IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.
- **PO6.** The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice
- **PO7.** Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- **PO8. Ethics:** Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- **PO9. Individual and team work:** Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- **PO10.** Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions

- **PO11. Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- **PO12.** Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PROGRAM SPECIFIC OUTCOMES (PSOs)

- **PSO1. Professional Design & Construction Engineering Skill:** Skill to apply the latest Design procedures for civil engineering structures by developing and applying the latest software. Construction being the heart of the infrastructural development, latest construction procedures is to be adopted using latest equipment and machineries.
- **PSO2. Innovative Skill:** An ability to explore new ideas in the field of Civil Engineering with the help of Development of high-quality technical knowledge through application of software and field observed data.
- **PSO3.** Civil Engineering Entrepreneurships: Scope of Civil and Construction Engineering Entrepreneurships are huge and attractive. Students of having right attitude of being entrepreneurs are encouraged and they can avail Institutional incubation cells and MSME inspiration.

Semester: 1s	st		Subj	ect Na	me: E	Ingine	ering N	/athen	natics	- I		Subjec	t Code	: 20BTT	TBS101
			ı				C	ourse	Outco	mes		I			
CO1	Ident	ify, for	mulat	te and	solve	Engine	eering	proble	ms.						
CO2	Acqui	re kno	wled	ge abo	ut Adv	/ance (Calcul	JS.							
CO3	Acqui	re kno	wled	ge abo	ut Ser	ies sol	ution (of Diffe	erentia	ıl equat	ions.				
CO4	Acqui	re kno	wled	ge abo	ut Gar	mma a	nd Bet	a func	tion.						
CO5	Acqui	re kno	wled	ge abo	ut Lap	lace tr	ansfo	m and	apply	it to so	lve IVP	·.			
	CO-PO Mapping CO-PSO Mapping CO-PSO Mapping														
Sl. No	PO1 PO2 P03 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO3														PSO3
CO1	3	3	2	2	-	-	-	-	-	-	-	_	2	3	-
CO2	2	2	2	2	-	-	-	-	-	-	-	-	2	3	-
CO3	3	3	3	2	-	-	-	-	-	-	-	-	3	2	-
CO4	2	2	2	2	-	-	-	-	-	-	-	-	1	3	-
CO5	2	3	3	3	-	-	-	-	-	-	-	-	2	2	-
Average	2.4	2.6	2.4	2.2	-	-	-	-	-	-	-	_	2	2.6	-
'3'High			'2'	Mode	erate			'1' Lo)W	ı		'-' No	Corre	lation	
Overall CO	Attaiı	nment										2.31			
PO Attainment	2.31	2.31	2.16	2	2	-	-	-	1.23	1.54	1.69	2	1.54	1.39	-

Semester: 1s	st		Subj	ect Na	me: E	Ingine	ering P	hysics				Subjec	t Code	: 20BTT	ΓBS102	
							Co	ourse (Outco	mes		<u> </u>				
CO1														ory syste	ems and	
CO2		nstrati					_	_						_	rimental cture of	
CO3			•	makin s of sc	_	erystal	structi	ires an	d crys	tallogra	phy to	learn ab	out dif	ferent m	naterials	
CO4	applic	ation.	Princ	iple of	optic					help to new g		-	-	as of its es in		
1	in vec	mmunication systems in some fundamental knowledge about electromagnetism. It will familiarize with some basic used vector calculus prior to development of Maxwell's electromagnetic wave equations & quantum echanics. CO-PO Mapping CO-PSO Mapping														
					(CO-PO	О Мар	ping					CO-P	PSO Ma	pping	
Sl. No	PO1	PO2	P03	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1	3	3	2	2	3	2	2	-	-	-	-	2	1	2	-	
CO2	3	2	1	3	2	2	1	-	-	-	-	2	1	1	-	
CO3	2	2	2	2	3	1	1	_	-	-	-	1	2	2	-	
CO4	3	2	1	2	1	1	1	-	-	-	-	2	2	1	-	
CO5	2	1	2	2	2	1	1	-	-	-	-	3	-	-	-	
Average	2.6	2	1.6	2.2	2.2	1.4	1.2	-	-	-	-	2	1.2	1.2	-	
'3'High	ı	ı	'2'	Mode	erate	1	ı	'1' Lo)W	ı	ı	'-' No	Corre	lation	I	
Overall CO	Attair	ıment										2.25				
PO Attainment	1.95	1.5	1.2	1.65	1.65	1.05	0.9	-	-	-	-	1.5	0.9	0.9	-	

Semester: 1s	st		Subj	ect Na	me: E	Basic E	lectric	al Eng	ineerii	ng		Subje	ct Code	20BT	TES101	
			ı				C	ourse (Outco	mes						
CO1	1	part b		nowle	dge of	electr	ical qu	antitie	s and 1	provide	workir	ng knov	vledge f	for the a	nalysis	
CO2	1					edance hasor			wer in	series	and par	allel RI	LC circu	uit with	single	
CO3	Relate	e the p	hase a	and lin	e elect	trical q	uantit	ies in p	oolyph	ase netv	works					
CO4	1	arn abo		_		l the ba	asic wo	orking	princi	ple of s	tatic ele	ectroma	ignetic (convers	ion	
CO5	То со	To comprehend the working principles of electrical DC and AC machines CO-PO Mapping CO-PSO Mapping														
		CO-PO Mapping CO-PSO Mapping														
Sl. No	PO1															
CO1	2	1	3	2	3	-	-	-	-	-	-	1	3	2	-	
CO2	3	2	1	3	2	-	-	-	-	-	-	2	3	3	-	
CO3	2	1	3	2	3	-	-	-	-	-	-	1	3	2	-	
CO4	3	2	1	2	3	-	-	-	-	-	-	2	3	3	-	
CO5	2	1	2	2	3	-	-	-	-	-	-	1	2	2	-	
Average	2.40	1.40	2.00	2.20	2.80	-	-	-	-	-	-	1.40	2.80	2.40	-	
'3'High	l	ı	'2'	Mode	erate			'1' Lo)W	I		'-' No	Corre	ation		
Overall CO	Attair	ıment										2.27				
PO Attainment	1.82	1.06	1.51	1.66	2.12	-	-	-	-	-	-	1.06	2.12	1.82	-	

Semester: 1s	st		Subj	ect Na	me: B	Basic N	1echan	ical E	nginee	ering		Subjec	ct Code	: 20BTT	ΓES103	
			1				C	ourse	Outco	mes		I				
CO1	To be	able to	under	rstand f	fundam	entals	statics,	friction	n, truss	, CG an	d MI					
CO2	To be	able t	o prin	ciple o	of dyna	amics,	work,	energ	y, imp	act, rota	ational	and cur	vilinear	motion	1.	
CO3	1					tion of Steam		-	nics,: I	.C. Engi	nes, Re	frigerato	ors and S	team		
CO4				erstan Syster		pplica	tion of	Screv	v Thre	ads, Nu	its, Bolt	ts & Riv	vets, Cl	utch and	d Gear	
CO5		To be able to understand Foundry Practices- Pattern, Mould & Casting, Mechanical working of metals - Sheet metal works. CO-PO Mapping CO-PSO Mapping														
		CO-PO Mapping CO-PSO Mapping														
Sl. No	PO1															
CO1	3	3	3	2	3	-	-	-	-	-	-	3	3	3	3	
CO2	2	3	3	2	3	-	-	-	-	-	-	3	3	3	2	
CO3	2	3	3	2	3	-	-	-	-	-	-	3	3	3	2	
CO4	2	2	3	2	3	-	-	-	-	-	-	3	3	2	2	
CO5	2	2	2	2	2	-	-	-	-	-	-	3	2	2	2	
Average	2.2	2.6	2.8	2	2.8	-	-	-	-	-	-	3	2.8	2.6	2.2	
'3'High	1	l	'2'	Mode	erate			'1' Lo)W	I		'-' No	Corre	lation		
Overall CO	Attaiı	ıment										2.18				
PO Attainment	1.6	1.89	2.03	1.45	2.03	-	-	-	-	-	-	2.18	2.03	1.89	1.6	

Semester: 1s	st		Subj	ect Na	me: (Comm	unicat	ive En	glish			Subjec	ct Code	: 20BTT	HS101	
			1				C	ourse (Outco	mes						
CO1	Use E	nglish	Lang	guage 6	effecti	vely in	writte	en forn	1.							
CO2	1				•	ifferen 1g skil	_	e, use	nform	ation to	demor	ıstrate ı	ındersta	anding a	nd	
CO3	Appli	cation	of gra	ammaı	to co	mmun	icate e	ffectiv	ely.							
CO4	_	ire bas	_	ficien	ey in 1	istenin	g and	pronur	nciatio	n, deve	loping	confide	nce and	enhanc	ing	
CO5		Crafting and customizing a CV to attract the attention of potential employers and enhancing employability. CO-PO Mapping CO-PSO Mapping														
		CO-PO Mapping CO-PSO Mapping														
Sl. No	PO1															
CO1	-	-	-	-	-	2	2	3	3	3	2	3	-	-	2	
CO2	-	-	-	-	-	2	1	3	3	3	2	3	-	-	2	
CO3	-	-	-	-	-	2	2	3	3	3	2	3	-	-	2	
CO4	-	-	-	-	-	-	2	2	3	3	2	2	_	-	2	
CO5	-	-	_	-	-	-	2	3	3	3	2	2	_	-	2	
Average	-	-	_	-	-	2.00	1.80	2.80	3.00	3.00	2.00	2.60	_	-	2.00	
'3'High		<u> </u>	'2'	Mode	erate			'1' Lo)W			'-' No	Correl	lation	<u> </u>	
Overall CO	Attair	ıment	•									2.53				
PO Attainment	-	-	-	-	-	1.69	1.52	2.36	2.53	2.53	1.69	2.19	-	-	1.69	

Semester: 1s	st		Subj	ect Na	me: P	hysics	Lab					Subjec	t Code	: 20BTF	PBS101	
							Co	ourse	Outco	mes						
CO1	Know	the ac	ccurac	y and	precis	ion in	measu	remen	t.							
CO2		how to				g's mo	dulus,	rigidit	y mod	ulus of	a wire	and to v	ındersta	and the	concept	
CO3	Deter	mine t	he sui	face to	ension	of liq	uid and	d to un	dersta	nd fluid	proper	ties.				
CO4	To ex	perim	ent wi	th way	ve nati	ire of l	light in	diffra	ction 1	through	a grati	ng.				
CO5	To kn	know the variation of I ~V of PN junction and BJT. CO-PO Manning CO-PSO Manning														
		CO-PO Mapping CO-PSO Mapping CO-PSO Mapping														
Sl. No	PO1	01 PO2 P03 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO3														
CO1	1	1	1	1	1	1	-	-	-	-	_	-	-	2	-	
CO2	1	1	1	2	1	1	_	_	-	-	-	-	-	2	-	
CO3	2	2	2	2	1	-	-	-	-	-	-	-	1	2	-	
CO4	1	1	1	2	1	1	-	-	-	-	-	-	-	2	-	
CO5	3	3	2	2	-	-	-	-	-	-	-	-	1	1	-	
Average	1.6	1.6	1.4	1.8	0.8	0.6	-	-	-	-	-	-	0.4	1.8	-	
'3'High	I		'2'	Mode	erate			'1' Lo)W	1	ı	'-' No	Corre	lation		
Overall CO	Attair	ıment										2.22				
PO Attainment	1.18	1.18	1.04	1.33	0.59	0.44	-	-	-	-	-	-	0.29	1.33	-	

Semester: 1s	st		Subj	ect Na	me: B	Basic E	lectric	al Eng	ineerii	ng Lab		Subjec	t Code	: 20BTF	PES101	
			I				Co	ourse (Outco	mes						
CO1	analy	ze elec	trical	circui	ts to so	olve pi	actical	probl	ems.		-			orems)		
CO2									1 /	time-fu the two	_			istics of	fuses,	
CO3	1					-				cal devi			orescer	nt lamps	,	
CO4							d by A			determi	ine curr	ent, vol	ltage, po	ower, ai	nd	
CO5	1	Demonstrate knowledge of house wiring, electrical safety rules, and grounding techniques, including the measurement of earth resistance using a megger. CO-PO Manning CO-PSO Manning														
		CO-PO Mapping CO-PSO Mapping														
Sl. No	PO1															
CO1	3	2	2	2	2	2	2	-	3	2	-	2	3	3	2	
CO2	3	2	2	2	2	2	2	-	3	2	-	2	3	2	2	
CO3	2	1	1	1	2	1	1	-	3	2	-	1	3	2	1	
CO4	1	1	1	1	1	1	1	-	2	1	-	1	3	2	1	
CO5	1	1	1	1	1	1	1	-	2	1	-	1	3	2	1	
Average	2	1.4	1.4	1.4	1.6	1.4	1.4	-	2.6	1.6	-	1.4	3	2.2	1.4	
'3'High	<u>I</u>	<u>I</u>	'2'	Mode	erate	<u> </u>	<u> </u>	'1' Lo)W	<u>I</u>		'-' No	Corre	lation		
Overall CO	Attair	ıment										2.18				
PO Attainment	1.45	1.02	1.02	1.02	1.16	1.02	1.02	-	1.89	1.16	-	1.02	2.18	1.60	1.02	

Semester: 1s	st		Subj	ect Na	me: E	Basic N	1echan	ical E	nginee	ring La	b	Subjec	t Code	: 20BTF	PES203
							C	ourse (Outco	mes					
CO1	To be	able t	o und	erstan	d diffe	rent co	ompon	ents ar	nd its f	unction	of an a	automol	oile.		
CO2	To be	able t	o und	erstan	d diffe	rent ty	pes of	boiler	and it	s constr	ruction				
CO3	To be	able t	o und	erstan	d the p	rincip	le of v	apour	compr	ession 1	efriger	ation sy	stem		
CO4	To be	able t	o und	erstan	d the d	lifferer	nt type	s of hy	drauli	c turbin	e and p	oump ar	nd its co	nstructi	ion.
CO5	To be	able t	o und	erstan	d princ	ciple a	nd woı	king o	f diffe	erent typ	oes of g	ear, clu	tch		
					(CO-PC) Map	ping					CO-P	SO Ma	pping
Sl. No	PO1														
CO1	2	2	2	2	2	-	-	-	3	3	2	-	3	2	-
CO2	2	2	2	2	2	-	-	-	3	3	2	-	3	2	-
CO3	2	1	2	1	1	-	-	-	3	3	2	-	2	2	-
CO4	1	1	1	1	1	-	-	-	3	2	1	-	2	1	-
CO5	1	1	1	1	1	-	-	-	2	2	1	-	2	1	-
Average	1.6	1.4	1.6	1.4	1.4	-	-	-	2.8	2.6	1.6	-	2.4	1.6	-
'3'High		ı	'2'	Mode	erate	I		'1' Lo)W	•		'-' No	Corre	lation	I
Overall CO	Attaiı	ıment										2.19			
PO Attainment	1.17	1.02	1.17	1.02	1.02	-	-	-	2.04	1.90	1.17	-	1.75	1.17	-

Semester: 1s	st		Subj	ect Na	me: E	ngine	ering C	Graphic	es & D	esign L	Lab	Subjec	t Code	: 20BTF	PES105	
							Co	ourse	Outco	mes		<u>I</u>				
CO1	Prepa	re and	unde	rstand	drawi	ngs.										
CO2	Use tl	ne prin	ciples	s of or	thogra	phic p	rojectio	ons.								
CO3							ids stu new pro			able to	visuali	ize thre	e dimer	nsional o	objects	
CO4	Desig	n and	fabric	ate su	rfaces	of diff	erent s	hapes								
CO5	Repre	sent th	ne obj	ects in	three	dimen	sional	appea	rances							
		CO-PO Mapping CO-PSO Mapping														
Sl. No	PO1	O1 PO2 P03 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO3														
CO1	3	1	2	1	2	3	-	-	1	-	-	2	2	-	1	
CO2	3	1	2	1	2	3	-	-	1	1	-	1	2	-	1	
CO3	3	1	2	1	1	3	-	-	1	-	-	2	3	-	1	
CO4	3	2	2	1	1	3	-	-	1	1	-	2	2	-	2	
CO5	3	1	3	1	1	3	-	-	1	-	-	2	2	-	2	
Average	3	1.2	2.2	1	1.4	3	-	-	1	0.4	-	1.8	2.2	-	1.4	
'3'High	I	ı	'2'	Mode	erate		l	'1' Lo)W	ı		'-' No	Corre	lation		
Overall CO	Attair	ıment										2.22				
PO Attainment	2.22	0.89	1.63	0.74	1.04	2.22	-	-	0.74	0.3	-	1.33	1.63	-	1.04	

Semester: 1s	st		Subj	ect Na	me: F	English	ı Lang	guage	Labor	atory		Subjec	t Code	: 20BTF	PHS101	
							C	ourse	Outco	mes		I				
CO1							n and u	sing tl	nem in	the rig	ht conte	ext. Wr	ite para	graphs,	stories	
	etc. u	sing sł	ort ar	nd cris	p sente	ences.										
CO2	Lister	ı, spea	k, rea	d & w	rite th	e soun	ds of E	English	using	correct	t stress,	tone ar	nd rhyth	m		
CO3		_				_					on, Ask Presenta	ing que	stions a	and		
CO4	Learn	ing an	d buil	ding s	oft ski	lls for	impro	ving p	rofessi	ionalisn	n amon	g stude	nts.			
CO5	Imbib	bibe the skills of critical appreciation of written content and draw conclusions on the given text. CO-PO Mapping CO-PSO Mapping														
Sl. No	PO1	01 PO2 P03 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO3														
CO1	-	-	-	-	-	2	2	2	3	3	3	2	-	-	2	
CO2	-	-	-	-	-	2	2	2	3	3	3	2	-	-	2	
CO3	-	-	-	-	-	2	2	2	3	3	3	3	-	-	2	
CO4	-	-	-	-	-	2	2	2	3	3	3	2	-	-	2	
CO5	-	-	-	-	-	2	2	2	3	3	3	2	-	-	2	
Average	-	-	-	-	-	2	2	2	3	3	3	2.2	-	-	2	
'3'High			'2'	Mode	erate		ı	'1' Lo)W	ı		'-' No	Correl	ation		
Overall CO	Attaiı	ıment										2.78				
PO Attainment	-	-	-	-	-	1.48	1.48	1.48	2.22	2.22	2.22	1.63	-	-	1.48	

Semester: 21	nd		Subj	ect Na	me: E	Ingine	ering N	/lathen	natics	II		Subjec	t Code	: 20BTT	TBS204	
			1				Co	ourse (Outco	mes						
CO1	Apply	the k	nowle	edge o	f Math	ematio	es in Pl	hysical	scien	ces and	Engine	eering.				
CO2	Acqu	ire kno	owled	ge of I	Double	and T	riple I	ntegra	l and t	heir apı	olicatio	ns in en	gineeri	ng subj	ects.	
CO3	Acqu	ire kno	owled	ge abo	ut Fou	ırier se	ries an	d Fou	rier tra	ınsform						
CO4	Apply	/ Knov	wledg	e vecto	or calc	ulus ir	engin	eering	and p	hysical	science	es.				
CO5	1 -	equire knowledge of Matrix Algebra, Determinants and their applications in engineering ojects. CO-PO Mapping CO-PSO Mapping														
Sl. No	PO1	01 PO2 P03 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO3														
CO1	3	3	3	2	-	-	-	-	-	-	-	-	3	2	-	
CO2	2	2	2	2	-	-	-	-	-	-	-	-	1	1	_	
CO3	2	2	2	2	-	-	-	-	-	-	-	-	1	1	-	
CO4	2	2	2	2	-	-	-	-	-	-	-	-	1	1	-	
CO5	3	3	3	2	-	-	-	-	-	-	-	-	3	2	-	
Average	2.4	2.4	2.4	2	-	-	-	-	-	-	-	-	1.8	1.4	-	
'3'High		I	'2'	Mode	erate			'1' Lo)W	I	ı	'-' No	Corre	lation		
Overall CO	Attaiı	ıment										2.31				
PO Attainment	1.85	1.85	1.85	1.54	-	-	-	-	-	-	-	-	1.39	1.08	-	

Semester: 21	nd		Subj	ect Na	me: E	Ingine	ering C	Chemis	try			Subjec	t Code	: 20BTT	TBS203	
			I				Co	ourse (Outco	mes		I				
CO1		ify var ıs batt		uels ba	ased o	n com	bustion	n parar	neters	and un	derstan	d the w	orking 1	principl	e of	
CO2		the cophoto	-		olecul	ar spec	etrosco	py to a	analyz	e organ	ic comp	oounds	using			
CO3				edge o		rochei	nistry	and co	rrosio	n scienc	ce in pr	eventin	g engin	eering		
CO4	To un		nd the	micro	ostruct	ure of	a give	n alloy	syste	ms and	eutecti	c syster	ns unde	r a give	n set of	
CO5	Discu	CO-PO Manning CO-PSO Manning														
		CO-PO Mapping CO-PSO Mapping														
Sl. No	PO1	PO2	P03	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1	3	2	3	3	3	2	2	-	-	1	1	3	1	2	-	
CO2	3	2	3	3	3	2	2	-	-	1	1	3	1	1	-	
CO3	3	2	3	3	3	2	2	-	-	1	1	3	2	2	-	
CO4	3	2	3	3	3	2	2	-	-	1	1	3	2	1	-	
CO5	3	2	3	3	3	2	2	-	-	1	1	3	_	-	-	
Average	3	2	3	3	3	2	2	-	-	1	1	3	1.2	1.2	-	
'3'High	<u>I</u>	<u>I</u>	'2'	Mode	erate	l	<u>I</u>	'1' Lo)W	<u>I</u>	<u> </u>	'-' No	Correl	lation		
Overall CO	Attair	ıment										2.26				
PO Attainment	2.26	1.51	2.26	2.26	2.26	1.51	1.51	-	-	0.75	0.75	2.26	0.90	0.90	-	

Semester: 21	nd		Subj	ect Na	me: B	Basic E	lectro	nics Er	nginee	ring		Subjec	t Code	: 20BTT	TES202
							C	ourse (Outco	mes					
CO1	Unde	rstand	the w	orking	princ	iples a	nd app	olicatio	ons of	semicor	nductor	diodes.			
CO2	Analy	se the	opera	ation, c	configu	uration	ıs, and	biasin	g of B	JTs.					
CO3	Analy	se the	chara	cterist	ics of	FETs	and fe	edback	conce	epts in a	amplific	ers and	oscillat	ors.	
CO4	Unde	rstand	the cl	naracte	ristics	and a	pplicat	tions o	f opera	ational	amplifi	ers.			
CO5	Desig	n and	simpl	ify dig	ital ci	rcuits 1	using I	Boolea	n alge	bra and	logic g	ates.			
					(CO-PO	O Map	ping					CO-P	SO Ma	pping
Sl. No	PO1 PO2 P03 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO														PSO3
CO1	3	2	1	1	1	1	1	1	1	1	1	2	3	1	1
CO2	3	3	2	2	2	1	1	1	2	1	1	2	3	2	2
CO3	3	3	2	2	2	1	1	1	2	1	1	2	3	2	2
CO4	3	2	2	2	2	1	1	1	2	1	1	2	3	2	2
CO5	3	3	3	2	3	1	1	1	2	2	2	2	3	2	2
Average	3	2.6	2	1.8	2	1	1	1	1.8	1.2	1.2	2	3	1.8	1.8
'3'High			'2'	Mode	erate	1		'1' Lo)W			'-' No	Corre	ation	
Overall CO	Attair	ıment										2.24			
PO Attainment	2.24	1.94	1.49	1.34	1.49	0.75	0.75	0.75	1.34	0.90	0.90	1.49	2.24	1.34	1.34

Semester: 21	nd		Subj	ect Na	me: B	Basic C	Civil Eı	nginee	ring			Subjec	t Code	:20BTT	ES204
							C	ourse (Outco	mes					
CO1	Able	to und	erstan	d the l	pasics	of civi	il engii	neering	g and f	undame	ental as	pects of	f buildii	ng.	
CO2	Able	to get	the br	ief ove	erview	of gen	neral a	spect o	of build	ding ma	iterial.				
CO3	Able	to get	brief i	idea ab	out tra	anspor	tation	modes	and p	lanning	•				
CO4	Able	to get	brief i	idea ab	out dr	inking	water	standa	ards ar	nd water	r treatm	ent pla	nt.		
CO5	Able	to get	brief i	idea ab	out in	rigatio	n netw	ork sy	stem.						
					(CO-PC	Э Мар	ping					CO-P	SO Ma	pping
Sl. No	PO1	PO1 PO2 P03 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2													PSO3
CO1	3	2	1	1	2	-	-	-	1	2	1	1	2	-	2
CO2	3	1	1	1	3	-	-	-	1	1	1	3	2	-	3
CO3	3	2	1	1	2	-	-	-	2	2	1	2	2	-	1
CO4	3	2	2	2	2	-	-	-	1	2	1	3	2	-	2
CO5	3	2	1	2	3	-	-	-	2	2	1	3	3	-	2
Average	3	1.8	1.2	1.4	2.4	-	-	-	1.4	1.8	1	2.4	2.2	-	2
'3'High	I	ı	'2'	Mode	erate			'1' Lo)W			'-' No	Corre	lation	
Overall CO	Attair	ıment										2.23			
PO Attainment	2.23	1.34	0.89	1.04	1.78	-	-	-	1.04	1.34	0.74	1.78	1.64	-	1.49

Semester: 2r	nd		Subj 'C'	ect Na	me: P	rogran	nming	for Pr	oblem	Solvin	g using	Subjec	t Code	: 20BTT	TES206	
			I				Co	ourse (Outco	mes						
CO1	Unde	rstand,	, trans	late ar	nd forn	nulate	the alg	orithn	ns to p	rogram	s (in C	languag	ge).			
CO2	Devel	op and	d built	logic	to sol	ve prol	blems	throug	h appl	ying th	e funda	mentals	5.			
CO3	Apply	/ modi	ılar pı	ogram	nming	approa	ach and	d recur	sion n	nechani	sm to s	olve the	compl	ex prob	lem.	
CO4	Unde	rstand	the m	emory	progr	am us	ing poi	inter fo	or prob	olem so	lving.					
CO5	Imple	ment ı	user d	efined	data t	ypes a	nd file	conce	pts to	develop	variou	ıs progr	ams.			
		CO-PO Mapping CO-PSO Mapping CO-PSO Mapping PO1 PO1 PO1 PO1 PSO1 PSO1 PSO1 PSO1 PSO														
Sl. No	PO1															
CO1	3	3	2	2	-	-	-	-	-	-	-	3	3	2	2	
CO2	3	3	2	2	3	-	-	-	-	-	-	3	3	3	2	
CO3	3	3	3	2	3	-	-	-	-	-	-	3	3	2	2	
CO4	3	3	3	2	3	-	-	-	-	-	_	3	2	2	2	
CO5	2	3	3	2	2	-	-	-	-	-	-	3	2	3	2	
Average	2.8	3	2.6	2	2.75	-	-	-	-	-	-	3	2.6	2.4	2	
'3'High	l	I	'2'	Mode	erate			'1' Lo)W			'-' No	Correl	ation		
Overall CO	Attair	ıment										2.21				
PO Attainment	2.06	2.21	1.92	1.47	2.03	-	-	-	-	-	-	2.21	1.92	1.77	1.47	

Semester: 21	nd		Subj	ect Na	me: E	Ingine	ering N	Mechar	nics			Subjec	t Code	: 20BT7	ΓES205
							C	ourse (Outco	mes					
CO1	1	alyze brium	the fo	rces an	nd moi	ments	develo	ped in	struct	ural me	mbers	using th	e princ	iple of	
CO2	To in	troduc	e the t	technic	ques fo	or anal	yzing	interna	l mem	ber for	ces acti	ng on ti	russes a	nd fram	nes
CO3	To so	lve ba	sic pro	oblem	s on ce	entroid	, mom	ents of	f inerti	a, and t	he prin	ciple of	virtual	work	
CO4	То ар	ply No	ewton	's law,	D'ale	mbert's	s princ	iple fo	r recti	linear a	nd curv	ilinear	motion.	,	
CO5	То ар	ply the	e kine	matics	of rot	ation,	Equat	ion of	motion	n of a ro	otating 1	body			
					(CO-PC	O Map	ping					CO-P	SO Ma	pping
Sl. No	PO1 PO2 P03 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 I													PSO3	
CO1	3	3	3	3	3	2	2	-	-	-	2	2	3	3	-
CO2	3	3	3	3	3	2	1	-	-	-	2	2	3	3	-
CO3	2	2	2	2	1	-	-	-	-	-	1	1	2	3	-
CO4	3	3	3	2	2	1	1	-	-	-	1	1	2	2	-
CO5	3	2	2	1	-	-	-	-	-	-	-	-	1	1	-
Average	2.80	2.60	2.60	2.20	2.25	1.67	1.33	-	-	-	1.50	1.50	2.20	2.40	-
'3'High			'2'	Mode	erate			'1' Lo)W	1		'-' No	Corre	lation	
Overall CO	Attair	nment										2.53			
PO Attainment	2.36	2.19	2.19	1.86	1.90	1.41	1.12	-	-	-	1.27	1.27	1.86	2.02	-

Semester: 2	nd		Subj	ect Na	me: E	Busines	ss Con	nmunic	ation	and life	Skills	Subjec	ct Code	: 20BTT	ΓHS202	
			1				Co	ourse (Outco	mes						
CO1	1			earn di akes pl		t form	ats of l	ousine	ss corr	espond	ence at	the wo	rkplace	through	n which	
CO2	1	stand s uses.		portan	ce of v	vriting	an effe	ective]	Resum	e and C	over let	ter in th	e profes	ssional v	vorld	
CO3	1		-	t and the			l prese	ntatio	n to im	prove p	orofessi	onal pr	esentati	on and	the	
CO4	Build assert	•		te Tea	mwork	c and l	eaders	hip. Le	earning	g effecti	ive time	e manag	gement	skills aı	nd	
CO5	Learn	Learn the nuances of effective listening and conversation and use them in their professional life. CO-PO Mapping CO-PSO Mapping														
Sl. No	PO1	PO2	P03	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1	-	-	-	-	-	2	2	3	3	3	2	3	-	-	2	
CO2	-	-	-	-	-	2	1	3	3	3	2	3	_	-	2	
CO3	-	-	-	-	-	2	2	3	3	3	2	3	-	-	2	
CO4	-	-	-	-	-	_	2	2	3	3	2	2	_	-	2	
CO5	-	-	-	-	-	-	2	3	3	3	2	2	-	-	2	
Average	-	-	-	-	-	2.00	1.80	2.80	3.00	3.00	2.00	2.60	-	-	2.00	
'3'High	1	ı	'2'	Mode	erate	1	ı	'1' Lo)W	ı	ı	'-' No	Corre	lation	1	
Overall CO	Attair	ıment	-,									2.54				
PO Attainment	-	-	-	-	-	1.69	1.52	2.37	2.54	2.54	1.69	2.20	-	-	1.69	

Semester: 21	nd		Subj	ect Na	me: C	Chemis	try La	b				Subjec	t Code	: 20BTF	PBS202	
							Co	ourse (Outco	mes		L				
CO1	1	and a			echniq	ues us	ed in c	hemis	try lab	oratory	for sm	all/large	e scale v	water		
CO2	Be ab	le esti	mate 1	the ion	s/meta	al ions	preser	nt in do	mesti	c/indust	try was	te water	•			
CO3	1			nental pectro		•	echniq	ues foi	analy	ses suc	h as titr	ations,	separati	ion /		
CO4	Able	to ana	lyze a	nd gai	n expe	rimen	tal skil	1.								
CO5	1	-	•			y meas trial us	_	its iod	ine or	acid val	lue by 1	neans o	f amou	nt of		
		CO-PO Mapping CO-PSO Mappin														
Sl. No	PO1															
CO1	2	2	1	3	3	1	-	-	2	1	-	1	-	2	-	
CO2	2	3	2	3	2	1	-	-	1	1	-	1	-	2	-	
CO3	3	2	1	3	3	1	-	-	1	1	-	1	1	2	-	
CO4	3	3	3	2	3	2	1	1	2	2	1	1	-	2	-	
CO5	1	1	1	1	1	1	1	1	3	3	1	2	1	1	-	
Average	2.2	2.2	1.6	2.4	2.4	1.2	0.4	0.4	1.8	1.6	0.4	1.2	0.4	1.8	-	
'3'High	1	1	'2'	Mode	erate	ı	1	'1' Lo)W	ı	1	'-' No) Correl	ation		
Overall CO	Attair	ıment										2.15				
PO Attainment	1.58	1.58	1.15	1.72	1.72	0.86	0.29	0.29	1.29	1.15	0.29	0.86	0.29	1.29	-	

Semester: 21	nd		Subj	ect Na	me: E	Basic E	lectro	nics Er	nginee	ring Lal	b	Subjec	t Code	: 20BTF	ES202
			ı				C	ourse (Outco	mes					
CO1	Acqu	ire kno	wled	ge of v	arious	electr	onic c	ompor	nents, 1	measuri	ng inst	ruments	5.		
CO2	Analy	se circ	cuit w	avefor	ms us	ing an	oscillo	scope	and fu	ınction	generat	tor.			
CO3	Imple	menta	tion o	of Diod	le in v	arious	applic	ations	Rectif	ier, Cli _l	pper, C	lamper.			
CO4	Acqu	ire kno	wled	ge of c	haract	eristic	s of tra	ansisto	rs and	various	applic	ations ı	ising O	p-Amp.	
CO5	Desig	n digi	tal cir	cuits f	or vari	ous ap	plicati	ons us	ing lo	gic gate	es.				
					(CO-PO) Map	ping					CO-P	SO Ma	pping
Sl. No	PO1 PO2 P03 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PS														PSO3
CO1	3	2	2	1	3	-	-	-	1	1	-	2	3	2	2
CO2	3	3	2	3	3	-	-	-	1	1	-	2	3	2	3
CO3	3	3	3	2	2	-	-	-	1	1	-	3	3	3	3
CO4	3	2	3	3	3	-	-	-	1	1	-	3	3	3	3
CO5	3	3	3	2	3	-	-	-	2	2	-	3	3	3	3
Average	3	2.6	2.6	2.2	2.8	-	-	-	1.2	1.2	-	2.6	3	2.6	2.8
'3'High		•	'2'	Mode	erate			'1' Lo)W			'-' No	Correl	lation	
Overall CO	Attaiı	ıment										2.23			
PO Attainment	2.23	1.93	1.93	1.64	2.08	-	-	-	0.89	0.89	-	1.93	2.23	1.93	2.08

Semester: 21	nd		Subj	ect Na	me: E	Basic C	ivil Er	nginee	ring L	ab		Subjec	t Code	: 20BTP	ES204
							Co	ourse (Outco	mes					
CO1	Perfo	rm Ma	terial	Testin	g and	Analy	sis.								
CO2	Evalu	ate Ce	ement	and C	oncret	e Prop	erties.								
CO3	Analy	ze Me	chani	cal Pro	opertie	es of R	einfor	cemen	t.						
CO4	Apply	y Surv	eying	Techn	iques	for Lir	near an	d Ang	ular N	leasure:	ment.				
CO5	Demo	onstrat	e Con	npeten	ce in A	Advano	ced Su	rveyin	g Instr	uments					
					(CO-PO	O Map	ping					CO-P	SO Ma	pping
Sl. No	PO1	PO1 PO2 P03 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PS													
CO1	3	1	2	1	2	3	-	-	1	-	-	2	2	-	1
CO2	3	1	2	1	2	3	-	-	1	1	-	1	2	-	1
CO3	3	1	2	1	2	3	-	-	1	-	-	2	3	-	1
CO4	3	2	2	1	2	3	-	-	1	1	-	2	2	-	2
CO5	3	1	3	1	2	3	-	-	1	-	-	2	2	-	2
Average	3	1.2	2.2	1	2	3	-	-	1	0.4	-	1.8	2.2	-	1.4
'3'High			'2'	Mode	erate			'1' Lo)W	1		'-' No	Corre	ation	
Overall CO	Attaiı	nment										2.21			
PO Attainment	2.21	0.88	1.62	0.74	1.47	2.21	-	-	0.74	0.3	-	1.33	1.62	-	1.03

Semester: 21	nd		Subj	ect Na	me: V	Vorksh	юр					Subjec	ct Code	: 20BTP	ES206	
			1				C	ourse	Outco	mes		1				
CO1	To be	able to	o use v	various	fitting	g tools	and ab	le to p	erform	fitting	operatio	on.				
CO2	To be	able to	o unde	erstand	princi	ple of	gas we	lding a	nd abl	e to per	form ga	s weldi	ng opera	ation.		
CO3	To be	able to	o unde	erstand	princi	ple of	arc we	lding a	nd able	e to perf	form are	c weldin	g opera	tion.		
CO4	1	able to			differe	ent par	ts of a	lathe a	nd ablo	e to per	form tui	rning, fa	cing, th	reading,)	
CO5		able to			differe	ent par	ts of a	shapin	g and 1	milling	machin	e and ab	le to pe	rform sł	naping	
		CO-PO Mapping CO-PSO Mapping														
Sl. No	PO1	PO1 PO2 P03 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO														
CO1	2	2	3	2	3	2	2	-	3	3	-	3	3	2	3	
CO2	2	2	3	2	2	2	2	-	3	3	-	3	3	2	3	
CO3	2	2	2	1	2	2	1	-	3	3	-	3	2	2	3	
CO4	2	2	3	2	2	1	2	-	3	2	-	2	2	1	3	
CO5	2	1	2	1	3	1	1	-	2	2	-	2	2	1	3	
Average	2	1.8	2.6	1.6	2.4	1.6	1.6	-	2.8	2.6	-	2.6	2.4	1.6	3	
'3'High			'2'	Mode	erate			'1' Lo)W	l		'-' No	Corre	lation	<u>I</u>	
Overall CO	Attaiı	ıment										2.14				
PO Attainment	1.43	1.29	1.85	1.14	1.71	1.14	1.14	-	2.00	1.85	-	1.85	1.71	1.14	2.14	

Semester: 21	nd		_	ect Na ion' La		rogran	nming	for Pr	oblem	Solving	g using	Subjec	ct Code	: 20BTF	PES207
							Co	ourse (Outco	mes		1			
CO1	Unde	rstand	the ba	asic co	ncept	of pro	gramm	ing.							
CO2	Apply	y progi	ramm	ing co	ncept t	o solv	e prob	lem.							
CO3	Deve	lop log	gic for	probl	em sol	ving.									
CO4	Reme	mber	the py	thon p	rograi	nming	appro	ach fo	r prob	lem sol	ving.				
CO5	Desig	n vari	ous m	odel to	o hand	le and	proces	ss data	•						
		CO-PO Mapping CO-PSO Mappin													
Sl. No	PO1	PO1 PO2 P03 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO													
CO1	3	2	3	2	2	-	-	-	2	1	2	1	2	2	-
CO2	3	2	2	3	3	-	-	-	1	1	2	2	2	1	-
CO3	3	2	2	2	3	-	-	-	1	1	3	1	2	2	-
CO4	3	3	2	2	2	-	-	-	1	1	3	1	2	1	-
CO5	3	2	3	2	3	-	-	-	1	1	2	2	1	2	-
Average	3	2.2	2.4	2.2	2.6	-	-	-	1.2	1	2.4	1.4	1.8	1.6	-
'3'High			'2'	Mode	erate			'1' Lo)W			'-' No	Corre	lation	
Overall CO	Attaiı	ıment										2.14			
PO Attainment	2.14	1.57	1.71	1.57	1.85	-	-	-	0.86	0.71	1.71	1	1.28	1.14	-

Semester: 3	rd		Subj	ect Na	me: D	Pata St	tructu	re Usi	ing 'C	,			ct Code TES303		
							C	ourse	Outco	mes					
CO1	Analy	ze per	forma	ance of	falgor	ithms	and in	pleme	ent var	ious op	erations	s on arra	ay and s	sparse n	natrix
CO2	Apply	the b	asic o	peratio	ons of	stacks	and q	ueues	to solv	e real v	vorld pı	oblems	i.		
CO3	Imple	ement	differ	ent typ	oes of	linked	list op	eratio	ns and	their a	pplicati	on.			
CO4	Repre	sent d	ata us	ing tre	es & g	graphs	to use	them	in vari	ious rea	l life ap	plication	ons		
CO5	Analy	ze var	ious s	orting	algori	ithms a	and ex	plore o	liffere	nt hashi	ing tech	niques.			
		CO-PO Mapping CO-PSO Mappin													
Sl. No	PO1														
CO1	2	2	3	2	1	1	-	-	-	-	-	0		1	-
CO2	3	3	3	2	1	1	-	-	-	_	-	1		1	-
CO3	3	3	3	2	1	1	-	-	-	_	-	1		1	-
CO4	3	2	3	3	1	2	-	-	-	_	_	1		1	-
CO5	1	3	3	3	1	1	-	-	-	-	-	1		1	-
Average	2.4	2.6	3	2.4	1	1.2	-	-	-	_	-	0.8		1	_
'3'High		I	'2'	Mode	erate	l	l	'1' L	ow	l	I	'-' N	o Corre	lation	I
Overall CO	verall CO Attainment											2.41			
Attainment	1.93	2.09	2.41	1.93	0.80	0.96	-	-	-	_	-	0.64		0.80	-

Semester: 3	rd		Subj	ect Na	me: M	ЛЕСН	ANIC	S OF	SOLI	D		Subject 20BTC	et CETPC	303	Code:
							C	ourse	Outco	mes					
CO1	1			rength		rious s	tructu	ral elei	ments	internal	forces	such as	compr	ession,	tension,
CO2	To su	ggest s	suitab	le mate	erial fr	om am	ong th	e avai	lable ii	n the fie	ld of co	nstruct	ion and	manufa	cturing.
CO3	1			ehavio nd fail		_		ructur	al elen	nents ui	nder the	action	of com	pound s	tress
CO4	To un	dersta	nd the	basic	conce	pt of a	ınalysi	s and	design	of men	nbers sı	abjected	l to tors	ion.	
CO5		To understand the basic concept of analysis and design of structural elements such as columns an struts. CO-PO Mapping CO-PSO Mapping													
	CO-PO Mapping CO-PSO Mapping														pping
Sl. No	PO1	PO2	P03	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	3	3	2	1	1	-	-	1	1	3	2	2	2
CO2	3	2	3	2	2	2	3	1	1	1	3	3	3	3	2
CO3	3	3	3	3	2	2	2	-	1	1	2	3	2	3	2
CO4	3	3	3	2	2	1	1	-	-	1	1	3	3	2	2
CO5	3	3	3	2	2	1	1	-	-	1	1	3	2	2	2
Average	3	2.8	3	2.4	2	1.4	1.6	1	1	1	1.6	3	2.4	2.4	2
'3'High		<u>I</u>	'2'	Mode	erate	I	<u>I</u>	'1' L	OW	<u> </u>	<u>I</u>	'-' N	o Corre	lation	
Overall CO	Attair	ıment										2.21			
Attainment	2.21	2.06	2.21	1.77	1.47	1.03	1.18	0.74	0.74	0.74	1.18	2.21	1.77	1.77	1.47

	rd												ct Code: CETPC304		
							C	ourse	Outco	mes					
CO1							•			haracter science		ike den	sity , sp	ecific g	gravity,
CO2	1					•		-		-		arious o		ns alon	g with
CO3	Students are able to understand the concept of fluid flow in multiple dimension ,principles of discharge ,energy and momentum as well as understand the working principle of various discharge measuring devices and their applications.													_	
CO4	Students will be able to apply their knowledge of fluid mechanics in addressing problems of open channel flow by understanding cross sections, hydraulic depth, hydrostatic pressure distribution and Manning's law and identifying future course of development in open channel flow														
CO5	Students will be able to understand and address problems pertain to design, construction as well efficient working of various types of hydraulics structures and machines by using dimension analysis and model studies. Students will also have knowledge in Impact of Jet on vanes which it base for analysis and design of turbo machines as well as knowledge of hydraulic machines (purnand turbines)											ensional nich is a			
	CO-PO Mapping CO-PSO Ma														
I													CO-P	SO Ma	pping
Sl. No	PO1	PO2	P03	PO4					PO9	PO10	PO11	PO12		PSO Ma	
Sl. No	PO1 3	PO2	P03	PO4					PO9 -	PO10	PO11	PO12			
					PO5	PO6	PO7		PO9 - 1				PSO1	PSO2	PSO3
CO1	3	3	2	2	PO5	PO6	PO7		-	1	1	3	PSO1 2	PSO2 2	PSO3
CO1	3	3	2	3	PO5 2 2	PO6	PO7 1 2		-	1	1 3	3	PSO1 2 2	PSO2 2 3	PSO3
CO1 CO2 CO3	3 3	3 3	3	2 3 2	PO5 2 2 2	PO6 1 1 1	PO7 1 2 2	PO8	- 1 1	1 1 1	3 2	3 3	PSO1 2 2 2	2 3 3	PSO3 1 1
CO1 CO2 CO3 CO4	3 3 3	3 3 3	3 3	2 3 2 3	PO5 2 2 2 2 2	PO6 1 1 1 2	PO7 1 2 2 2	PO8 2	1 1 -	1 1 1 1	1 3 2	3 3 3	PSO1 2 2 2 2 2	2 3 3 2	PSO3 1 1 1 1
CO1 CO2 CO3 CO4 CO5	3 3 3 3	3 3 3 3	2 3 3 3 2.8	2 3 2 3 3	PO5 2 2 2 2 2 2 2	PO6 1 1 2 2	PO7 1 2 2 1	PO8 2 1	- 1 1 - -	1 1 1 1	1 3 2 1	3 3 3 3 3	PSO1 2 2 2 2 2 2	PSO2 2 3 2 3 2 3 2.6	PSO3 1 1 1 1 1
CO1 CO2 CO3 CO4 CO5 Average	3 3 3 3 3	3 3 3 3 3	2 3 3 3 2.8	2 3 2 3 3 2.6	PO5 2 2 2 2 2 2 2	PO6 1 1 2 2	PO7 1 2 2 1	PO8 2 1 1.5	- 1 1 - -	1 1 1 1	1 3 2 1	3 3 3 3 3	PSO1 2 2 2 2 2 2 2	PSO2 2 3 2 3 2 3 2.6	PSO3 1 1 1 1 1

Semester: 3	rd		Subj	ect Na	me: C	GEOT	ECHN	NICAI	L ENG	SINEEL	RING	cct Code: CETPC307			
							C	ourse	Outco	mes					
CO1		ates w					y to ic	lentify	vario	us types	s of soil	s and it	s prope	rties, fo	rmulate
CO2	Graduate will show the basic understanding of flow through soil medium and its impact of engineering solution														
CO3		Graduate to understand about the basic concept of stress distribution in loaded soil medium and soil settlement due to consolidation													
CO4		Graduate will show the understanding of shear strength of soils and its impact of engineering solutions to the loaded soil medium.													ineering
CO5		Graduates will demonstrate an ability to design both finite and infinite slopes, component ar process as per needs and specifications.													ent and
					(CO-PC) Map	ping					CO-P	SO Ma	pping
Sl. No	PO1	PO2	P03	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	2	3	3	2	2	-	-	_	2	2	3	3	1
CO2	3	3	3	3	3	2	1	-	-	_	2	2	3	3	-
CO3	2	2	2	2	1	-	-	-	-	_	1	1	2	3	1
CO4	3	3	3	2	2	1	2	-	-	_	1	2	2	2	-
CO5	3	2	2	1	-	-	-	-	-	_	-	-	1	1	-
Average	2.80	2.60	2.40	2.20	2.25	1.67	1.67	-	-	_	1.50	1.75	2.20	2.40	1
'3'High	1	ı	'2'	Mode	erate	l	l	'1' L	ow	I	I	'-' N	o Corre	lation	I
Overall CO	Attair	ıment										2.27			
PO Attainment	2.12	1.97	1.82	1.66	1.70	1.26	1.26	-	-	-	1.14	1.32	1.66	1.82	0.76

Semester: 31	rd		Subj	ect Na	me: S	URVI	EYINO	G				et Code: CETPC309					
							C	ourse	Outco	mes							
CO1	Student are able to understand the basic principles of surveying for vertical, horizontal, linear an angular measurements to arrive at solutions to basic surveying problems													ear and			
CO2	Student are able to understand levelling (auto level, theodolite) and using it in field of construction Further draw contours to represent 3D data on plane figures.													ruction.			
CO3	Students are able to understand capture geodetic data to process and perform analysis for surve problems with the use of electronic instruments.														survey		
CO4	Students will be able to apply their knowledge of Survey in design and implement different types of curves of alignment, and applying surveying techniques to align highway and railway curves														• -		
CO5	Students will be able to analyze type of survey operation required for problem solving in field perform.												field to				
			СО-Н	PSO Ma	pping												
Sl. No	PO1	PO2	P03	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3		
CO1	3	3	2	2	1	2	2	-	1	-	1	3	2	2	2		
CO2	3	3	2	3	3	2	2	-	1	-	3	3	3	3	2		
CO3	3	3	3	3	3	2	2	-	1	-	2	3	2	3	2		
CO4	3	3	3	3	2	3	2	1	1	-	1	3	3	2	2		
CO5	3	3	3	2	2	2	2	1	1	-	1	3	2	2	2		
Average	3	3	2.6	2.6	2.2	2.2	2	1	1	-	1.6	3	2.4	2.4	2		
'3'High	L	l	'2'	Mode	erate	l		'1' Lo	OW			'-' N	o Corre	lation	I		
Overall CO	Overall CO Attainment										2.41						
Attainment	2.41	2.41	2.08	2.0	1.7	1.76	1.60	0.80	0.80		1.28	2.41	1.928	1.928	1.60		

Semester: 31	Subject Name: Employability Skill-II Subject S									Subjec	bject Code:					
												20BTC	EPPC3	312		
							Co	ourse	Outco	mes						
CO1	Stude	nt will	be ab	ole to i	mprov	e their	comn	nunica	tion sk	xills.						
CO2	Stude	nt will	be ab	ole to i	mprov	e their	interp	erson	al and	teamwo	ork skil	ls.				
CO3	Stude	Student will be able to improve their problem solving skills														
CO4	Stude	Student will be able to learn about professionalism.														
CO5	Student will be able to develop their carrier by self development.															
	CO-PO Mapping												CO-PSO Mapping			
Sl. No	PO1	PO2	P03	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1	-	-	-	-	-	2	2	3	3	3	2	3	-	-	2	
CO2	-	-	-	-	-	2	1	3	3	3	2	3	-	-	2	
CO3	-	-	-	-	-	2	2	3	3	3	2	3	-	-	2	
CO4	-	-	-	-	-	-	2	2	3	3	2	2	-	-	2	
CO5	-	-	-	-	-	-	2	3	3	3	2	2	-	-	2	
Average	-	-	-	-	-	2.00	1.80	2.80	3.00	3.00	2.00	2.60	-	-	2.00	
'3'High	1		'2'	Mode	erate		1	'1' Lo	ow			'-' No	o Corre	lation		
Overall CO	Attair	ıment										2.54				
PO Attainment	-	-	-	-	-	1.69	1.52	2.37	2.54	2.54	1.69	2.20	-	-	1.69	

Semester: 31	rd	Subject Name: Environmental Science & Engineering Subject Code: 20BTTMC301														
							C	ourse	Outco	mes						
CO1	Apply concepts of ecology, ecosystems, food chain and biogeochemical cycles for bette understanding of functions of the environment													better		
CO2	Understand environmental gradients, tolerance level sand environmental laws for prevention o environmental pollution.													ntion of		
CO3	Enhance knowledge of water and waste water treatment for prevention of water pollution.															
CO4	Understand the chemistry of pollutants in the atmosphere, soil and ground water and understand principles of noise abatement.														lerstand	
CO5	Enhance knowledge of waste minimization technique tominimize and manage solid, hazardou wastes generated in different areas.													zardous		
	CO-PO Mapping CO-PSO Map												pping			
Sl. No	PO1	PO2	P03	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1	_	-	-	-	-	3	3	2	1	1	1	3	-	1	2	
CO2	_	-	-	-	-	3	3	3	2	2	2	3	_	2	2	
CO3	-	-	-	-	-	3	3	2	2	2	2	3	-	2	2	
CO4	-	-	-	-	-	3	3	2	2	2	2	3	-	2	2	
CO5	-	-	-	-	-	3	3	3	2	2	3	3	-	2	3	
Average	-	-	-	-	-	3	3	2.4	1.8	1.8	2	3	-	1.8	2.2	
'3'High	I	l	'2'	Mode	erate	I	I	'1' Lo	ow	I		'-' N	o Corre	lation		
Overall CO	Overall CO Attainment									2.55						
Attainment	-	-	-	-	-	2.55	2.55	2.04	1.53	1.53	1.70	2.55	-	1.53	1.87	

Semester: 31	rd		Subject Name: Universal Human Values									Subject Code:				
				20BTTHS304												
							C	ourse	Outco	mes						
CO1	More	aware	of the	emselv	es, an	d their	surro	unding	gs (fam	ily, soc	iety, na	iture)				
CO2	They would become more responsible in life, and in handling problems with sustainable solutions while keeping human relationships and human nature in mind.														olutions,	
CO3	They would have better critical and analytical ability and sense of living in harmony.															
CO4	They would also become sensitive to their commitment towards what they have understood (huma values, human relationship and human society).													(human		
CO5	They would be able to apply what they have learnt to their own self in different day-to-day setting in real life, at least a beginning would be made in this direction.													settings		
	CO-PO Mapping CO-PSO Ma												pping			
Sl. No	PO1	PO2	P03	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1	-	-	-	-	-	3	3	2	2	1	3	1	-	1	1	
CO2	-	-	-	-	-	3	3	3	2	2	2	3	-	2	2	
CO3	-	-	-	-	-	2	3	2	2	2	2	3	_	2	2	
CO4	-	-	-	-	-	3	3	3	3	3	2	3	-	2	2	
CO5	-	-	-	-	-	2	3	2	2	2	3	3	-	2	3	
Average	-	-	-	-	-	2.6	3	2.4	2.2	2	2.4	2.6	-	1.8	2	
'3'High			'2'	Mode	erate			'1' L	ow '-' No Correlation							
Overall CO	Overall CO Attainment									2.29						
Attainment	-	-	-	-	-	1.98	2.29	1.83	1.68	1.53	1.83	1.98	-	1.37	1.53	

Semester: 3		Subject Name: Fluid Mechanics & Hydraulic Machines Lab								Subject Code: 20BTCEPPC305						
							C	ourse	Outco	mes		ı				
CO1	Deter	mine t	he im	pact o	f jets i	n flow	devic	es .								
CO2	Analyze the equilibrium conditions of floating bodies.															
CO3	Apply Bernoulli equation for calibration of flow measuring devices.															
CO4	Determine the performance characteristics of turbines.															
CO5	Determine the performance characteristics of pumps.															
			CO-F	CO-PSO Mapping												
Sl. No	PO1	PO2	P03	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1	3	3	2	2	2	1	1	-	-	1	3	1	2	3	1	
CO2	3	3	2	2	2	1	1	-	1	1	2	3	2	3	1	
CO3	3	3	2	2	2	2	1	-	1	1	2	3	2	2	1	
CO4	3	2	2	3	2	2	1	2	-	1	2	3	2	2	1	
CO5	3	2	2	3	2	2	1	1	-	1	3	3	2	2	1	
Average	3	2.6	2	2.4	2	1.6	1	1.5	1	1	2.4	2.6	2	2.4	1	
'3'High		<u>I</u>	'2'	Mode	erate	l	l	'1' L	ow	l	<u> </u>	'-' N	o Corre	Correlation		
Overall CO	Overall CO Attainment								1.32							
Attainment	1.32	1.14	0.88	1.06	0.88	0.70	0.44	0.66	0.44	0.44	1.06	1.14	0.88	1.06	0.44	

Semester: 31	rd		Subj	ect Na	me: D	ata St	tructu	re Usi	ng 'C	' Lab		Subjec	t Code	:		
												20BTF	PES308			
							C	ourse	Outco	mes						
CO1	Imple	ment v	variou	s oper	ations	on arr	ay and	l spars	e matr	ix.						
CO2		n func		to imp	lemen	t basic	opera	tions o	on stac	k & qu	eue and	apply	them to	solve r	eal	
CO3	Imple	ment s	single	, doub	le & ci	ircular	linked	l list a	nd app	ly them	in vari	ous rea	l life ap	plication	ons.	
CO4	Const	onstruct binary search tree and perform traversal, insertion, deletion, and search operations on it erform BFS and DFS traversal operations in a graph and implement various sorting and searching														
CO5		rform BFS and DFS traversal operations in a graph and implement various sorting and searching orithms														
		CO-PO Mapping CO-PSO Mappin														
Sl. No	PO1	PO2	P03	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1	2	3	3	-	-	1	-	-	-	-	-	1	3	-	3	
CO2	2	3	3	-	-	1	-	-	-	-	-	1	3	-	3	
CO3	2	3	3	-	-	1	-	-	-	-	-	-	3	-	3	
CO4	2	3	2	-	-	2	-	-	-	-	-	1	3	-	3	
CO5	2	3	3	-	-	1	-	-	-	-	-	1	3	-	3	
Average	2	3	2.8	-	-	1.2	-	-	-	-	-	0.8	3	-	3	
'3'High	•	-	'2'	Mode	erate		-	'1' L	ow	-	-	'-' No	o Corre	lation		
Overall CO	Attair	ment							1.61							
Attainment	1.07	1.61	1.50	-	-	0.64	-	-	-	-	-	0.43	1.61	-	1.61	

Semester: 31	rd		Subj	ect Na	me: C	Seotec	hnical	Engi	neerin	g Lab			t Code			
												20D1	CEIIV			
							Co	ourse	Outco	mes						
CO1	Stude	nts are	able	to con	duct te	ests to	detern	nine th	e inde	x prope	rties of	soils				
CO2	Stude	nts are	be to	deteri	nine tl	ne in s	itu der	nsity a	nd con	npaction	n charac	cteristic	S.			
CO3	Stude	nts are	able	to con	duct te	ests to	detern	nine th	e com	pressibi	ility of	soil.				
CO4	Stude	nts are	able	to con	duct te	ests to	detern	nine th	e pern	neability	y of soi	ls.				
CO5	Stude	cudents are able to conduct tests to determine the strength of soils. CO-PO Mapping CO-PSO Mapping														
		CO-PO Mapping CO-PSO Mapping														
Sl. No	PO1	PO2	P03	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1	3	3	2	2	2	1	1	-	-	1	3	1	3	2	1	
CO2	3	3	2	2	2	1	1	-	1	1	2	3	3	3	1	
CO3	3	3	2	2	2	2	1	-	1	1	2	3	3	3	1	
CO4	3	2	2	3	2	2	1	2	-	1	2	3	3	3	2	
CO5	3	2	2	3	2	2	1	1	-	1	3	3	2	2	3	
Average	3	2.6	2	2.4	2	1.6	1	1.5	1	1	2.4	2.6	2.8	2.6	1.6	
'3'High	1		'2'	Mode	erate			'1' Lo	ow	•		'-' No	o Corre	lation		
Overall CO	Attair	ıment										1.67				
Attainment	1.67	1.45	1.11	1.34	1.11	0.89	0.56	0.84	0.56	0.56	1.34	1.45	1.56	1.45	0.89	

Semester: 31	rd		Subj	ect Na	me: S	urvey	Field	Work	(Subjec	ct Code	:		
												20BTC	CEPPC	308		
							C	ourse (Outco	mes						
CO1	Apply	the p	rincip	le of s	urveyi	ng for	Civil	engine	ering	Applica	ition.					
CO2	Calcu level.	lation	of are	eas, dra	awing	plans	and co	ntour 1	maps ı	ısing di	fferent	measur	ing equ	ipment	at field	
CO3	To pro	epare 1	topogi	raphic	al map	and c	ontour	map c	on an a	ırea						
CO4	To rel	o relate theoretical knowledge of surveying to resolve real field problems. o learn to work as team, ethics, and prepare technical reports of surveying.														
CO5	To lea	o learn to work as team, ethics, and prepare technical reports of surveying.														
		CO-PO Mapping CO-PSO Mappin														
Sl. No	PO1	PO2	P03	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1	3	3	2	2	2	1	1	-	1	1	1	3	3	2	1	
CO2	3	3	3	2	3	1	1	-	1	1	1	3	3	3	1	
CO3	3	3	3	2	3	1	1	-	2	1	1	3	3	3	1	
CO4	3	3	3	3	3	1	1	-	2	2	1	3	3	3	2	
CO5	2	2	2	2	2	1	1	3	3	3	3	3	2	2	3	
Average	2.8	2.8	2.6	2.2	2.6	1	1	3	1.8	1.6	1.4	3	2.8	2.6	1.6	
'3'High	<u>l</u>	l	'2'	' Mode	erate	<u>I</u>	I	'1' L	ow	<u>I</u>	<u>I</u>	'-' N	o Corre	lation		
Overall CO	Attair	ıment	<u> </u>									1.7				
Attainment	1.59	1.59	1.47	1.25	1.47	0.57	0.57	1.70	1.02	0.91	0.79	1.70	1.59	1.47	0.91	

Semester: 4 ^t	h			ect Na ematic		ngine	ering						ct Code BS405	:	
							C	ourse	Outco	mes					
CO1				-	_					_		s related	_	ineering tion.	3,
CO2	Know	about	inter	polatic	on. Enl	nance	this id	ea tow	ards n	umerica	al integ	ration.			
CO3	Solve	Initial	l value	e Probl	lem an	d Bou	ndary	value	proble	m using	g single	step an	ıd multi	step me	ethod.
CO4			•	ge abo	_		-	•	rando	m varia	ıble, pro	obability	y distrib	outions,	
CO5		equire knowledge about point estimation, interval of estimation, testing hypothesis, regression alysis and statistical quality control. CO-PO Mapping CO-PSO Mapping													
		CO-PO Mapping CO-PSO Mapping													
Sl. No	PO1														
CO1	3	3	3	3	-	-	-	-	-	-	-	-	2	2	-
CO2	2	2	2	2	-	-	-	-	-	-	-	-	1	2	-
CO3	2	2	2	2	-	-	-	-	-	_	_	-	2	2	-
CO4	3	3	2	2	-	-	-	-	-	-	-	-	2	2	-
CO5	2	2	2	2	-	-	-	-	-	-	-	-	2	2	-
Average	2.4	2.4	2.2	2.2	-	-	-	-	-	-	-	-	1.8	2	-
'3'High		l	'2'	Mode	erate			'1' L	ow			'-' No	o Corre	lation	
Overall CO	Attair	ıment										2.14			
PO					-	-	-	-	-	-	-	-			
Attainment	1.71	1.71	1.56	1.56									1.28	1.42	-

Semester: 4 ^t	h		Subj	ect Na	me: S	tructui	ral An	alysis-	Ι				ct Code BS405	:		
							C	ourse	Outco	mes		1				
CO1	То рі	ovide	a holi	stic de	evelop	ment c	of the s	student	ts for t	he cour	ses in s	ector of	Structi	ural Ana	alysis	
CO2	To pro	esent t	he fou	ındatio	ons of	many	basic e	engine	ering c	concepts	s related	d to An	alysis o	f structı	ıres	
CO3	_	ve an ural de	_	ience	for im	pleme	ntatio	n of a	nalysis	conce	ots whi	ch are	applied	in the	field of	
CO4	To in	volve i	n the	applic	ation o	of scien	ntific a	and tec	hnolo	gical pr	inciples	s of Ana	alysis			
CO5	l	To enable the students realize the real-life behaviour of Civil Engineering structures and to make he students familiar with latest computational techniques and software used for structural analysis CO-PO Mapping CO-PSO Mapping														
		CO-PO Mapping CO-PSO Mapping														
Sl. No	PO1	PO2	P03	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1	3	2	3	3	2	2	2	-	2	1	1	3	1	3	3	
CO2	2	3	3	3	2	2	1	-	2	1	1	2	1	3	2	
CO3	3	3	3	2	3	2	2	-	2	1	2	3	1	2	3	
CO4	3	2	2	3	2	2	1	-	2	1	1	3	1	3	3	
CO5	3	3	3	3	3	2	1	-	2	1	1	3	1	3	2	
Average	2.8	2.6	2.8	2.8	2.4	2	1.4	-	2	1	1.2	2.8	1	2.8	2.6	
'3'High	•		'2'	Mode	rate		ı	'1' Lo	OW	1		'-' No	o Corre	lation		
Overall CO	Attair	ıment										2.62				
PO																
Attainment	2.44	2.27	2.44	2.44	2.09	1.74	1.22	-	1.74	0.87	1.04	2.44	0.87	2.44	2.27	

Semester: 4 ^t	h		Subj	ect Na	me: T	ranspo	ortation	n Engi	neerin	g-I		Subject	Code:			
												20BTC	CETPC4	108		
							Co	ourse	Outco	mes						
CO1				le to u readin			•	yze tra	nsport	ation sy	stem, h	istory o	of highw	vay engi	neering	
	highw	ay suc	ch as s		istance	s, hori	_	_	-		_			-	nt of the	
CO3	Stude	nt will	be at	ole to u	ınders	tand re	gardin	g the	design	criteria	of pav	ements	by IRC	guideli	ine.	
CO4	traffic	ident will be able apply their knowledge of traffic engineering and components of traffic such as ffic signs, signals, and design of traffic signals design, rotary intersection, Volume studies, and eed studies.														
CO5																
					(CO-PC) Map	ping					CO-F	PSO Ma	pping	
Sl. No	PO1	PO2	P03	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1	3	2	3	3	2	2	2	-	2	1	1	3	1	3	3	
CO2	3	2	3	3	3	2	1	-	2	1	1	2	1	3	2	
CO3	3	3	2	3	3	2	2	-	2	1	2	3	1	2	3	
CO4	3	2	2	3	2	2	2	-	2	1	1	3	1	3	3	
CO5	3	3	3	3	3	2	1	-	2	1	1	3	1	3	2	
Average	3	2.4	2.6	3	2.6	2	1.6	-	2	1	1.2	2.8	1	2.8	2.6	
'3'High	I	I	'2'	Mode	erate	<u> </u>	<u>I</u>	'1' Lo	ow	<u> </u>	I	'-' N	o Corre	lation	<u> </u>	
Overall CO	Attair	ıment										2.42				
PO																
Attainment	2.42	1.93	2.09	2.42	2.09	1.61	1.29	-	1.61	0.80	0.96	2.25	0.80	2.25	2.09	

Semester: 4th	1		Subj	ect Na	me: V	Vater a	nd Wa	iste W	ater Eı	ngineeri	ing	_	ct Code			
	I								0 1			20B1C	CETPC4	¥1U		
							C	ourse	Outco	mes						
CO1	Stude	ent wil	l be a	ble to	clarify	and io	dentify	raw v	vater.							
CO2	Stude	ent wi	ll be a	able to	apply	appro	opriate	treatr	nent to	o raw v	vater i.e	e. surfa	ce wate	r/groun	d water	
	usefu	ıl for d	omes	tic as v	well as	drink	ing pu	rpose,	indust	ries liq	uid was	te and i	reuse of	water.		
CO3	Stude	ent wil	l be al	ole to o	calcula	ite and	recom	mend	the pi	pe- netv	vork dis	stributio	on for w	ater sup	ply and	
	Sewa	ige dis	posal	effect	ively.											
CO4	Stude	ents w	ill be	able to	sumn	narize	the qu	ality p	arame	ters typ	ically u	sed to c	lifferen	tiate		
		vastewater and judge the different classes of treated wastewater. Students will be able to describe various types of process units.														
CO5	Stud	Students will be able to describe various types of process units.														
		Students will be able to describe various types of process units. CO-PO Mapping CO-PSO Mapping														
Sl. No	PO1	PO2	P03	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1	3	2	3	3	2	2	2	-	2	-	1	3	1	3	3	
CO2	3	3	3	3	3	1	1	-	2	-	1	2	1	3	2	
CO3	3	3	2	3	3	2	2	-	2	-	2	3	1	3	3	
CO4	3	2	3	2	3	2	2	-	1	-	1	2	1	3	3	
CO5	3	3	3	3	3	2	1	-	1	-	1	3	1	3	1	
Average	3	2.6	2.8	2.8	2.8	1.8	1.6	-	1.6	-	1.2	2.6	1	3	2.4	
'3'High	I	ı	'2'	Mode	erate	I	I	'1' Lo	OW	l		'-' N	o Corre	lation		
Overall CO	Attair	ıment										2.51				
PO																
Attainment	2.51	2.17	2.34	2.34	2.34	1.50	1.33	-	1.33	-	1.00	2.17	0.83	2.51	2.00	

Semester: 4	th		Subj	ect Na	me: E	mploy	ability	Skill-	·II			Subjec	t Code	:	
												20BTC	EPPC4	13	
							C	ourse	Outco	mes					
CO1	Stude	nt will	be ab	ole to i	mprov	e their	comn	nunica	tion sl	xills.					
CO2	Stude	nt will	be ab	ole to i	mprov	e their	interp	erson	al and	teamwo	ork skil	ls.			
CO3	Stude	nt will	be ab	ole to i	mprov	e their	probl	em so	ving s	kills					
CO4	Stude	nt will	be ab	ole to 1	earn al	bout p	rofessi	ionalis	m.						
CO5	Stude	tudent will be able to develop their carrier by self development.													
		CO-PO Mapping CO-PSO Mapping													
Sl. No	PO1														PSO3
CO1	3	2	1	-	1	-	-	3	2	3	3	2	1	2	1
CO2	2	2	1	-	1	-	-	3	2	3	2	2	1	2	2
CO3	3	1	1	-	1	-	-	2	3	3	2	2	1	2	1
CO4	2	2	1	-	1	-	-	3	2	3	3	2	1	2	2
CO5	2	1	1	-	1	-	-	3	2	3	2	2	1	2	1
Average	2.4	1.6	1	-	1	-	-	2.8	2.2	3	2.4	2	1	2	1.4
'3'High	1	ı	'2'	Mode	erate	I	I	'1' L	OW	l	ı	'-' No	o Corre	lation	<u> </u>
Overall CO	Attair	ıment										2.33			
PO Attainment	1.86	1.24	0.77	-	0.77	-	-	2.17	1.70	2.33	1.86	1.55	0.77	1.55	1.08

Semester: 4 ^t	h		Subj	ect Na	me: C	Concre	ete Teo	hnolo	gy			Subjec	t Code	:		
												20BTC	CETPE4	102		
			l				Co	ourse (Outco	mes						
CO1	Get th	ne deta	il kno	wledg	e of va	arious	buildii	ng mat	erials	used in	constru	iction.				
CO2	Clear	the co	ncept	of free	sh and	harde	ned pr	opertie	es of c	oncrete	•					
CO3	Get th	ne kno	wledg	e to de	esign t	he con	crete 1	nix an	d find	the pro	portion	al quan	tity by	using IS	code.	
CO4	Devel	lop the	knov	vledge	about	the te	chniqu	e behi	nd cor	struction	on work	ζ.				
CO5	Well	ell understanding of the mechanism of construction by using different equipments CO-PO Manning CO-PSO Manning														
		CO-PO Mapping CO-PSO Mapping														
Sl. No	PO1															
CO1	3	2	3	3	2	2	2	-	-	1	1	3	1	3	3	
CO2	3	3	3	3	3	2	1	-	-	1	1	2	1	3	2	
CO3	3	3	2	3	3	2	2	-	-	1	2	3	1	2	3	
CO4	3	2	2	3	2	2	2	-	-	1	1	3	1	3	3	
CO5	3	3	3	3	3	2	1	-	-	1	1	3	1	3	2	
Average	3	2.6	2.6	3	2.6	2	1.6	-	-	1	1.2	2.8	1	2.8	2.6	
'3'High	l	I	'2'	Mode	erate	I	I	'1' Lo	OW	I	I	'-' No	o Corre	lation	I	
Overall CO	Attair	ıment										2.42				
PO																
Attainment	2.42	2.09	2.09	2.42	2.09	1.61	1.29	-	-	0.80	0.96	2.25	0.80	2.25	2.09	

Semester: 4 ^t	th		Subj	ect Na	me: E	Ingine	eering	Econo	mics a	and Co	sting	Subject 20BTT	ct Code THS405			
			<u> </u>				C	ourse	Outco	mes						
CO1	Evalu	ate the	econ	omic t	heorie	s, cos	t conce	epts an	d prici	ing poli	cies					
CO2	Under	rstand	the m	easure	s of na	ationa	l incon	ne, the	functi	ons of b	oanks a	nd conc	epts of	globali	zation	
CO3	Apply	the co	oncep	ts of fi	nancia	al man	ageme	ent for	projec	t apprai	sal					
CO4	Unde	rstand	accol	unting	syster	ns and	l analy	ze fina	ncial	stateme	nts usir	ng ratio	analysi	S		
CO5	Understand the impact of inflation, taxation, depreciation. Financial planning, economic basis for replacement, project scheduling, and legal and regulatory issues are introduced and applied to economic investment and project-management problems. CO-PO Mapping CO-PSO Mapping															
Sl. No	PO1	PO2	P03	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1	-	-	-	-	-	-	2	1	2	2	2	1	-	1	-	
CO2	-	-	-	-	-	-	2	2	2	1	1	1	-	1	-	
CO3	-	-	-	-	-	-	1	2	1	2	1	2	-	1	-	
CO4	-	-	-	-	-	-	1	2	1	1	1	2	-	1	-	
CO5	-	-	-	-	-	-	2	1	1	1	1	2	-	1	-	
Average	-	-	-	-	-	-	1.6	1.6	1.4	1.4	1.2	1.6	-	1	-	
'3'High			'2'	Mode	erate			'1' Lo	ow			'-' No	o Corre	lation		
Overall CO	Attair	ıment										2.12				
PO Attainment	-	-	-	-	-	-	1.13	1.13	0.98	0.98	0.84	1.13	-	0.70	-	

Semester: 4 ^t	h		Subj	ect Na	me: C	Constit	ution (Of Indi	ia			Subjec	t Code	:		
												20BT	ГМС40	2		
							C	ourse	Outco	mes						
CO1	Analy	ze the	basic	struct	ure of	Indiar	n Cons	titutio	n.							
CO2	Reme	mber 1	their I	Fundar	nental	Right	s, DPS	SP's an	d Fund	damenta	al Dutie	es (FD's	s) of our	r consti	tution.	
CO3	Knov	v abou	t our	Union	Gove	rnmen	t, polit	cical st	ructure	e & cod	es, prod	cedures	•			
CO4	Under	rstand	our S	tate Ex	kecutiv	/e & E	lection	ıs syst	em of	India.						
CO5		Remember the Amendments and Emergency Provisions, other important provisions given by the onstitution. CO-PO Mapping CO-PSO Mapping														
		CO-PO Mapping CO-PSO Mapping PO1 PO2 P03 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO														
Sl. No	PO1	PO2	P03	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1	1	-	-	-	-	-	1	3	1	2	1	1	-	-	1	
CO2	1	-	-	-	-	-	1	3	1	2	1	1	-	-	1	
CO3	1	-	-	-	-	-	1	3	1	2	1	1	-	-	1	
CO4	1	-	-	-	-	-	1	3	1	2	1	1	-	-	1	
CO5	1	-	-	-	-	-	1	3	1	2	1	1	-	-	1	
Average	1	-	-	-	-	-	1	3	1	2	1	1	-	-	1	
'3'High		<u> </u>	'2'	Mode	erate		I.	'1' L	OW		l	'-' N	o Corre	lation		
Overall CO	Attair	ment										2.11				
PO		-	-	-	-	-							-	-		
Attainment	0.70						0.70	2.11	0.70	1.40	0.70	0.70			0.70	

Semester: 4 ^t	h		Subj	ect Na	me: T	ranspo	ortatio	n Engi	neerin	g-Lab		Subject 20BTC	et Code CEPPC4			
							C	ourse	Outco	mes						
CO1	Identi	fy the	functi	onal r	ole of	differe	ent ma	terials	of hig	hway e	ngineer	ring.				
CO2	Test t	he exis	sting l	nighwa	ay mat	erial u	sed fo	r const	tructio	n of pav	vement.					
CO3	Exam	ine the	e qual	ity of t	hat ma	aterial	used i	n exist	ing hi	ghway.						
CO4	Appl	y this l	know]	ledge t	o mix	design	n philo	sophy	to get	differe	nt suita	ble B.M	I. &S.D	D.B.C. M	lix.	
CO5	Stude	tudent shall learn to work in a team to achieve the objective.														
		CO-PO Mapping CO-PSO Mapping														
Sl. No	PO1															
CO1	3	2	3	3	2	2	2	-	2	1	1	3	1	3	3	
CO2	3	2	3	3	3	2	1	-	2	1	1	2	1	3	2	
CO3	3	3	2	3	3	2	2	-	2	1	2	3	1	2	3	
CO4	3	2	2	3	2	2	2	-	2	1	1	3	1	3	3	
CO5	3	3	3	3	3	2	1	-	2	1	1	3	1	3	2	
Average	3	2.4	2.6	3	2.6	2	1.6	-	2	1	1.2	2.8	1	2.8	2.6	
'3'High	1	1	'2'	Mode	erate	1	1	'1' Lo	ow	1	1	'-' No	o Corre	lation		
Overall CO	Attair	ıment										2.42				
PO																
Attainment	2.42	1.93	2.09	2.42	2.09	1.61	1.29	-	1.61	0.80	0.96	2.25	0.80	2.25	2.09	

Semester: 4 ^t	th		Subj	ect Na	me: E	nviror	nmenta	ıl Engi	neerin	ıg Lab		Subject 20BTC	t Code: EPPC41	0		
							C	ourse	Outco	mes						
CO1	Deter	mine p	H, El	ectrica	ıl Con	ductiv	ity and	l turbio	dity of	water s	ample					
CO2	Deter	mine t	he ph	ysical	charac	teristi	cs of w	ater								
CO3	Dete	rmine	the ch	emica	l chara	cterist	tics of	water								
CO4	Deter	rmine	the bi	ologic	al char	acteris	stics of	fwate	r							
CO5	Deter	Determine DO,BOD of water CO PO Manning CO PSO Manning														
		CO-PO Mapping CO-PSO Mapping														
Sl. No	PO1															
CO1	3	2	3	3	2	2	2	-	2	1	1	3	1	3	3	
CO2	3	3	3	3	3	2	1	-	2	1	1	2	1	3	2	
CO3	3	3	2	3	3	2	2	-	2	1	2	3	1	2	3	
CO4	3	2	2	3	2	2	2	-	1	1	1	3	1	3	3	
CO5	3	3	3	3	3	2	1	-	1	1	1	3	1	3	2	
Average	3	2.6	2.6	3	2.6	2	1.6	-	1.6	1	1.2	2.8	1	2.8	2.6	
'3'	High				'3'Hi	gh			'2' N	Moderat	te		'1'	Low		
	(Overal	ll CO	Attaiı	nment							2.31				
PO																
Attainment	2.4	1.92	2.08	2.4	2.08	1.6	1.28	-	1.28	0.8	0.96	2.24	0.8	2.24	2.08	

Semester: 4 ^t	h		Subj	ect Na	me: C	ivil E	nginee	ring D	rawing	g		Subject	Code:			
												20BTC	CEPPC4	109		
			I				C	ourse	Outco	mes						
CO1	To kn	ow ho	w to a	apply e	engine	ering o	drawin	g usin	g com	puters.						
CO2	To un	dersta	nd ab	out the	scope	of Au	ıto CA	D soft	ware							
CO3	To kı	now w	hat is	plan a	and ele	evation	n and	how it	shoul	d drawn	in auto	o CAD	softwar	e		
CO4	Draw	steel	roof t	russ ar	nd its v	arious	section	ons.								
CO5	-	Complete drawing of plan and elevation for a residential/office/commercial/medical building showing all the structural work like footing/staircase/brickwork /flooring etc. CO-PO Mapping CO-PSO Mapping														
	CO-PO Mapping CO-PSO Mappin															
Sl. No	PO1	PO2	P03	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1	2	1	1	1	-	-	-	-	2	-	2	-	3	2	2	
CO2	2	1	1	1	-	-	-	-	1	-	2	-	3	2	1	
CO3	2	2	1	1	-	-	-	-	2	-	2	-	3	2	2	
CO4	2	1	1	1	-	-	-	-	1	-	2	-	3	2	1	
CO5	2	1	1	1	-	-	-	-	1	-	2	-	3	2	2	
Average	2	1.2	1	1	-	-	-	-	1.4	-	2	-	3	2	1.6	
'3'	High			'2	2' Mod	lerate			'1	' Low		•	'-' No C	Correlati	on	
	(Overal	ll CO	Attaiı	ıment							2.34				
PO					-	-	-	-								
Attainment	1.56	0.93	0.78	0.78					1.09	-	1.56	-	2.34	1.56	1.24	

Semester: 4 ^t	h		Subj	ect Na	me: N	Iini Pr	oject l	[Subjec	t Code	:		
												20BTC	EPPSI4	406		
							Co	ourse	Outco	mes						
CO1	Stude	nts are	able	to kno	w the	theore	tical k	nowle	dge.							
CO2	Stude	nts are	able	to do t	he pra	ctical	imple	nentat	ion.							
CO3	Stude	nts are	able	to gair	the a	bility (of prob	olem s	olving	and ana	alysis.					
CO4	Stude	nts are	able	to lead	the p	roject	manag	gement	•							
CO5	Stude	nts are	able	to gair	team	work a	and co	llabora	tion.							
		CO-PO Mapping CO-PSO Mapping														
Sl. No	PO1															
CO1	3	3	3	3	2	3	2	2	3	3	3	2	3	3	2	
CO2	3	3	2	2	3	3	2	2	3	2	3	2	3	2	2	
CO3	3	3	3	3	2	3	2	2	3	2	3	3	3	2	2	
CO4	3	3	2	2	3	3	2	3	3	2	3	2	3	3	2	
CO5	3	3	3	3	2	3	2	2	3	3	3	3	3	2	2	
Average	3	3	2.6	2.6	2.4	3	2	2.2	3	2.4	3	2.4	3	2.4	2	
'3'High			'2'	Mode	rate			'1' Lo	OW	<u> </u>		'-' N	o Corre	lation	L	
Overall CO	Attair	ıment										2.42				
PO																
Attainment	2.42	2.42	2.09	2.09	1.96	2.42	1.61	1.77	2.42	1.93	2.42	1.93	2.42	1.93	1.61	

Semester: 5 ^t	h		Subj	ect Na	me: S	tructu	ral An	alysis-	II				et Code CETPC5			
							C	ourse	Outco	mes		<u> </u>				
CO1	l .	sis of ani's n			te stru	cture ı	ising s	lope-d	leflecti	ion met	hod, mo	oment d	listribut	ion met	hod	
CO2							_			ferent st				ike moi	ment	
CO3	_				alysis lly ind		_		-	Matrix	Metho	d using	stiffnes	ss met	hod	
CO4		olving structural design problems by flexibility matrix method suitable to kinametically determinate structures. ow to find the shape factors and also formation of plastic hinge in a structure.														
CO5	How	Iow to find the shape factors and also formation of plastic hinge in a structure.														
		CO-PO Mapping CO-PSO Mapping														
Sl. No	PO1	PO2	P03	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1	3	3	2	2	2	2	-	2	-	-	2	1	2	2	3	
CO2	2	3	3	1	1	3	-	1	-	-	1	2	1	1	2	
CO3	2	3	3	2	2	2	-	2	-	-	2	1	2	3	3	
CO4	2	3	3	1	1	3	-	2	-	-	3	1	3	1	2	
CO5	2	2	1	2	1	2	-	3	-	-	2	1	2	1	1	
Average	2.2	2.8	2.4	1.6	1.4	2.4	-	2	-	-	2	1.2	2	1.6	2.2	
'3'High	I	I	'2'	Mode	erate		1	'1' Lo	ow	I	I	'-' No	o Corre	lation		
Overall CO	Attair	ment										2.50				
PO Attainment	1.83	2.33	2	1.33	1.16	2	-	1.66	-	-	1.66	1	1.66	1.33	1.83	

Semester: 5 ^t	h		Subj	ect Na	me: D	esign	of Co	ncrete	Struct	ures		_	ct Code			
							C	ourse	Outco	mes		l				
CO1	factor use th	s to kr e desiş	now th gn cor	ie prop	erties of worl	of cor king st	ress m	structu nethod	re and		ncept of	Stress	block p	d safety paramete fferent		
CO2				forced, oring n			forced	, T, an	d L be	am sect	ions fo	r obtain	ning the	reinfor	cement	
CO3				n cond				d two-	way S	labs and	d contin	uous sl	abs for	design	the	
CO4	1	Understand the concepts of short and long columns to evaluate the design strength of vertical numbers and obtain reinforcement details. Develop concept for the design of various type of retaining walls.														
CO5	Devel	Develop concept for the design of various type of retaining walls. CO-PO Mapping CO-PSO Mapping														
					(CO-PC) Map	ping					CO-F	'SO Ma	pping	
Sl. No	PO1	PO2	P03	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1	3	3	3	2	1	2	-	2	3	-	-	1	3	3	3	
CO2	2	2	3	2	3	2	-	3	2	-	-	2	1	1	2	
CO3	3	3	3	2	1	2	-	2	1	-	-	1	2	3	3	
CO4	2	2	3	3	3	3	-	2	2	-	-	1	3	1	2	
CO5	2	2	2	2	1	2	-	3	2	-	-	1	2	2	2	
Average	2.4	2.4	2.8	2.2	1.8	2.2	-	2.4	2	-	-	1.2	2.2	2	2.4	
'3'High	<u> </u>		'2'	Mode	erate		1	'1' L	ow			'-' N	o Corre	lation		
Overall CO	Attair	ment										2.51				
PO																
Attainment	2.00	2.00	2.34	1.84	1.50	1.84	-	2.00	1.67	-	-	1.00	1.84	1.67	2.0	

Semester: 5 ^t	h			ect Na	me: H	lydrolo	ogy an	d Ope	n Chai	nnel		•	et Code			
							Co	ourse	Outco	mes						
CO1	Defin catchi		ey dri	ivers o	n wate	er reso	urces,	hydro	logica	proces	ses and	their in	ntegrate	d behav	iour in	
CO2		the k		_	•	_					probler	ns inclu	ıding ba	ısin		
CO3		in the			lischar	ge tim	e beha	aviour	of cate	chments	s throug	gh hydro	ograph	UH and	other	
CO4	1 -	explain the concept of hydrological extremes such as Flood and Drought and management rategies pply the concepts of open channel flow for design and analysis.														
CO5	Apply	pply the concepts of open channel flow for design and analysis. CO-PSO Manning														
		CO-PO Mapping CO-PSO Mapping														
Sl. No	PO1	PO2	P03	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1	3	3	3	2	1	2	-	-	1	-	-	1	2	1	3	
CO2	2	3	2	1	2	3	-	-	2	-	-	2	1	1	2	
CO3	3	3	3	2	1	2	-	-	1	-	-	1	2	2	3	
CO4	2	3	3	1	3	3	-	-	1	-	-	3	3	2	1	
CO5	3	3	3	2	1	2	-	-	2	-	-	1	2	1	3	
Average	2.6	3	2.8	1.6	1.6	2.4	-	-	1.4	-	-	1.6	2	1.4	2.4	
'3'High	<u>I</u>	I	'2'	Mode	erate	<u> </u>	<u> </u>	'1' Lo	ow	<u> </u>	I	'-' No	o Corre	lation		
Overall CO	Attair	ıment										2.55				
PO																
Attainment	2.21	2.55	2.38	1.36	1.36	2.04	-	-	1.19	-	-	1.36	1.7	1.19	2.04	

Semester: 5 ^t	h		Subj	ect Na	me: F	ounda	tion E	nginee	ring				et Code CETPE5			
			•				Co	ourse (Outco	mes						
CO1						•	to pla			te a deta	iled sit	e invest	tigation	to selec	et	
CO2				nonstra specif		•	to des	sign sh	allow	foundat	tions, it	s comp	onent o	r proces	s as	
CO3						•	to des	_		ed footin	ngs and	raft for	undation	ns, its		
CO4	l	raduate will demonstrate an ability to design deep foundations, its component or process as per needs and specifications. raduate will demonstrate an ability to design retaining walls, its component or process as per the														
CO5	l	Graduate will demonstrate an ability to design retaining walls, its component or process as per the eeds and specifications.														
					(CO-PC) Map	ping					CO-P	SO Ma	pping	
Sl. No	PO1	PO2	P03	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1	3	3	3	2	1	2	3	-	1	-	-	1	2	1	3	
CO2	3	3	2	3	1	3	2	-	2	-	-	3	3	1	1	
CO3	3	3	3	2	1	2	3	-	1	-	-	1	2	2	3	
CO4	2	3	3	1	1	3	3	-	1	-	-	2	3	1	2	
CO5	2	1	1	2	1	2	1	-	2	-	-	1	2	1	1	
Average	2.6	2.6	2.4	2	1	2.4	2.4	-	1.4	-	-	1.6	2.4	1.2	2	
'3'High	I	ı	'2'	Mode	rate		I	'1' Lo	ow	<u>ı</u>		'-' No	o Corre	lation		
Overall CO	Attair	ıment										2.48				
PO																
Attainment	2.14	2.14	1.98	1.65	0.82	1.98	1.98	-	1.15	-	-	1.32	1.98	0.99	1.65	

Semester: 5 ^t	h		Subj	ect Na	me: S	olid W	Vaste N	Manago	ement			_	ct Code			
							C	ourse	Outco	mes		l				
CO1	1	mental	l princ	ciples o	of soli	_		-	-				o descri			
CO2	1	ify dif	ferent					-						racteriz aste, an		
CO3	1	•			_			_					vith vari	ious wa lling.	ste	
CO4	1	Understanding of waste management policies and regulations: Students will understand the key policies and regulations governing solid waste management at national and international levels. Waste management planning and design: Students will be able to apply waste management														
CO5	1															
				I			1	ı		I =	I =					
Sl. No	PO1	PO2	P03	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1	3	3	3	2	3	2	-	2	-	-	-	1	2	3	3	
CO2	2	3	2	1	1	3	-	1	-	-	-	2	1	1	2	
CO3	3	2	3	3	2	2	-	2	-	-	-	1	2	2	3	
CO4	3	3	3	2	1	2	-	2	-	-	-	1	2	3	3	
CO5	3	2	3	2	2	2	-	3	-	-	-	3	2	1	2	
Average	2.8	2.6	2.8	2	1.8	2.2	-	2	-	-	-	1.6	1.8	2	2.6	
'3'High	I	I	'2'	Mode	erate	I	I	'1' Lo	OW	ı	ı	'-' N	o Corre	lation	1	
Overall CO	Attair	ment										2.53				
PO Attainment	2.26	2.10	2.26	1.60	1.51	1.05		1.68				1.34	1.51	1.68	2.19	

Semester: 5 ^t	h		Subj	ect Na	me: E	mploy	ability	Skill-	·III				ct Code			
							C	ourse	Outco	mes						
CO1	Have	skills	and p	repared	dness	for apt	itude t	ests.								
CO2	Be eq	uipped	l with	essen	tial co	mmun	ication	skills	(writi	ng, ver	bal and	non-ve	rbal)			
CO3	Maste	er the p	oresen	tation	skill a	nd be	ready	for fac	ing int	terview	S.					
CO4	Build	team	and le	ad it fo	or prol	olem s	olving									
CO5	After	fter the completion of this unit the students will have learnt the strategies of vocabulary.														
		CO-PO Mapping CO-PSO Mappin														
Sl. No	PO1	O1 PO2 P03 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO														
CO1	3	3	3	2	1	2	-	2	1	-	-	1	2	1	3	
CO2	3	2	3	2	1	2	-	3	2	-	-	1	2	1	3	
CO3	3	3	3	2	1	2	-	2	1	-	-	1	2	2	3	
CO4	2	3	2	1	1	3	-	1	2	-	-	2	1	1	2	
CO5	3	2	3	2	1	2	-	3	2	-	-	1	2	1	3	
Average	2.8	2.6	2.8	1.8	1	2.2	-	2.2	1.6	-	-	1.2	1.8	1.2	2.8	
'3'High	ı	l	'2'	Mode	erate			'1' L	OW		I	'-' N	o Corre	lation		
Overall CO	Attair	ıment										2.46				
PO Attainment	2.29	2.13	2.29	1.47	0.82	1.80	-	1.80	1.31	_	-	0.98	1.47	0.98	2.29	

Semester: 5 ^t	h			ect Na tion-I	me: E	ssence	e of Inc	dian K	nowle	dge and	1		ct Code CMC503		
							C	ourse	Outco	mes					
CO1	Unde	rstand	the co	oncept	of Tra	dition	al kno	wledge	e and i	ts impo	rtance.				
CO2	Know	the no	eed ar	nd imp	ortanc	e of pr	otecti	ng trac	litiona	l knowl	edge.				
CO3	Know	the va	arious	enact	ments	related	d to the	e prote	ection	of tradit	tional k	nowled	ge.		
CO4	Unde	rstand	the co	oncept	s of In	tellect	ual pro	perty	to pro	tect the	traditio	nal kno	wledge	·.	
CO5	Unde	Understand the traditional knowledge in different sectors.													
		CO-PO Mapping CO-PSO Mapping													
Sl. No	PO1														
CO1	3	3	3	2	1	2	-	-	1	-	2	1	2	1	3
CO2	1	3	1	1	1	2	-	-	3	_	1	2	2	3	2
CO3	3	3	3	2	1	2	-	-	1	_	2	1	2	2	3
CO4	3	3	3	2	1	2	-	-	1	-	2	1	2	1	3
CO5	3	2	3	2	1	2	-	-	2	_	2	1	2	1	3
Average	2.6	2.8	2.6	1.8	1	2	-	-	1.6	-	1.8	1.2	2	1.6	2.8
'3'High		l	'2'	Mode	erate			'1' L	OW	I	I	'-' N	o Corre	lation	
Overall CO	Attair	ıment										2.47			
PO Attainment	2.14	2.30	2.14	1.48	0.82	1.64	-	-	1.31	-	1.48	0.98	1.64	1.31	2.30

Semester: 5 ^t	h		Subj	ect Na	me: S	tructu	ral Eng	gineeri	ng La	b			et Code CEPPC5			
							C	ourse	Outco	mes						
CO1	Under	rstand	the sc	ftware	e usage	es and	produ	ce stru	ctural	drawin	g for st	ructural	membe	ers.		
CO2	Desig	n and	analy	ze plar	ne fran	ne and	truss	subjec	ted to	differer	it type o	of loadi	ng			
CO3	Desig	n, deta	iling	and es	timati	ons of	RC st	ructura	al men	nbers lil	ke bean	ı, colun	nn, slab	, and Fo	oting	
CO4	Desig	n and	analys	sis of l	oridge	deck s	slab fo	r diffe	rent lo	ading c	onditio	ns				
CO5	Desig	esign and analysis of retaining wall for different loading conditions CO. PO. Manning														
		CO-PO Mapping CO-PSO Mapping														
Sl. No	PO1															
CO1	2	3	3	2	1	2	-	3	3	-	-	1	2	3	3	
CO2	3	3	2	2	2	3	-	1	2	_	_	2	3	1	2	
CO3	2	2	3	2	1	2	-	2	1	_	-	1	2	2	3	
CO4	3	3	2	3	2	3	-	1	2	-	-	1	3	1	1	
CO5	3	2	3	2	1	2	-	3	2	-	-	1	2	1	3	
Average	2.6	2.6	2.6	2.2	1.4	2.4	-	2	2	_	-	1.2	2.4	1.6	2.4	
'3'High			'2'	Mode	erate			'1' L	ow	I	I	'-' N	o Corre	lation		
Overall CO	Attair	ment										2.44				
PO																
Attainment	2.11	2.11	2.11	1.78	1.13	1.95	-	1.62	1.62	-	-	0.97	1.95	1.30	1.95	

Semester: 5 ^t	h		Subj	ect Na	me: D	esign	of Co1	ncrete	Struct	ures Pra	actice	Subject 20BTC	et Code CEPPC5			
							C	ourse	Outco	mes		I				
CO1	know	how t	o find	the pr	operti	es of d	ifferer	nt ingr	edients	s of con	crete.					
CO2	Desig	n conc	erete r	nix as	per In	dian st	andaro	d for d	ifferen	it types	of conc	rete.				
CO3	Unde	rstand	to cal	culate	the de	ad loa	d and	live lo	ad of o	lifferen	t structi	ıral me	mber.			
CO4	Devel	op cor	ncept	for the	desig	n of va	arious	RCC 1	nembe	er.						
CO5	Know	now the detailing of different structural member														
		CO-PO Mapping CO-PSO Mapping														
Sl. No	PO1															
CO1	3	3	3	2	1	2	-	2	1	-	-	1	2	1	3	
CO2	3	2	2	1	3	3	-	3	2	_	-	2	3	1	3	
CO3	3	3	3	3	1	2	-	2	1	-	-	1	2	2	1	
CO4	2	3	3	1	1	3	-	2	2	-	_	1	3	1	2	
CO5	3	2	3	2	3	2	-	3	2	-	-	1	2	2	3	
Average	2.8	2.6	2.8	1.8	1.8	2.4	-	2.4	1.6	-	-	1.2	2.4	1.4	2.4	
'3'High			'2'	Mode	erate			'1' L	ow			'-' No	o Corre	lation		
Overall CO	Attair	ıment										2.48				
PO																
Attainment	2.31	2.14	2.31	1.48	1.48	1.98	-	1.98	1.32	-	-	0.99	1.98	1.15	1.98	

Semester: 5	h		Subj	ect Na	me: C	Concre	te Tecl	hnolog	gy Lab				ct Code			
							C	ourse	Outco	mes						
CO1	Outli	ne the	impor	tance	of test	ing of	cemen	nt and	its pro	perties.						
CO2	Asses	s the c	liffere	nt pro	perties	of ag	gregat	e.								
CO3	Sumn	narise	the co	ncept	of wo	rkabili	ty and	testin	g of co	oncrete.						
CO4	Descr	ibe the	e prep	aration	n of gr	een co	ncrete									
CO5	Descr	ibe the	e prop	erties	of har	dened	concre	ete.								
		CO-PO Mapping CO-PSO Mapping														
Sl. No	PO1	O1 PO2 P03 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO														
CO1	3	3	3	2	1	2	-	2	1	-	-	1	2	1	3	
CO2	2	3	2	1	1	3	-	1	2	-	-	2	1	1	2	
CO3	3	3	3	2	1	2	-	2	1	-	-	1	2	2	3	
CO4	2	3	3	1	1	3	-	2	1	-	-	1	3	1	2	
CO5	3	2	3	2	1	2	-	3	2	-	-	1	2	1	3	
Average	2.6	2.8	2.8	1.6	1	2.4	-	2	1.4	-	-	1.2	2	1.2	2.6	
'3'High			'2'	Mode	erate			'1' L	OW		1	'-' N	o Corre	lation		
Overall CO	Attair	ıment										2.54				
PO Attainment	2.20	2.37	2.37	1.35	0.84	2.03	-	1.69	1.18	-	-	1.01	1.69	1.01	2.20	

Semester: 5 ^t	h		Subj	ect Na	me: E	valuat	ion of	Sumn	ner Int	ernship			ct Code CEPPSI			
							C	ourse	Outco	mes						
CO1	struct		oduct	s / ser	vices o	_			-				-	agement his / he		
CO2	1		_		on of in ats (SV		ip, the	stude	nt is a	ble to as	ssess its	Streng	ths, We	eakness	es,	
CO3					nine th		_	and fi	uture p	otentia	l for his	/ her ii	nternshi	p organ	ization	
CO4								ng in p	oractic	al situa	tions by	accom	plishin	g the tas	sks	
CO5	1	tudent is able to apply various soft skills such as time management, positive attitude and ommunication skills during performance of the tasks assigned in internship organization. CO-PO Mapping CO-PSO Mapping														
					(CO-PC) Map	ping					CO-F	PSO Ma	pping	
Sl. No	PO1	PO2	P03	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1	3	3	3	2	2	2	1	2	2	-	1	1	2	1	3	
CO2	3	3	2	2	3	3	1	1	2	-	2	2	1	1	2	
CO3	3	3	2	2	3	2	1	2	2	-	1	1	2	2	3	
CO4	2	3	3	2	3	3	1	2	1	-	1	1	3	1	2	
CO5	3	2	3	2	2	2	1	3	3	-	1	1	2	1	3	
Average	2.8	2.8	2.6	2	2.6	2.4	1	2	2	-	1.2	1.2	2	1.2	2.6	
'3'High	l	I	'2'	Mode	erate	I	l .	'1' L	OW	I		'-' N	o Corre	lation	I	
Overall CO	Attair	ment										2.55				
PO																
Attainment	2.38	2.38	2.21	1.7	2.21	2.04	0.85	1.7	1.7	-	1.02	1.02	1.7	1.02	2.21	

Semester: 5 ^t	h		Subj	ect Na	me: N	Aini Pr	oject l	Π					ct Code CEPPSI:			
							C	ourse	Outco	mes						
CO1	Unde	rstand	and a	pply tl	ne kno	wledg	e of th	e indu	stry in	which	the inte	rnship i	is done.			
CO2	Reme	mber	and ap	ply th	e knov	wledge	and s	kills le	arned	in the c	lassroo	m in a	work se	etting.		
CO3	Unde	rstand	and a	nalyze	the ac	ctivitie	s and	functio	ons of	busines	s profes	ssionals	·.			
CO4	Unde	rstand	and e	valuat	e the a	reas fo	or futu	re kno	wledge	e and sk	xill deve	elopme	nt.			
CO5		rsonal career goals. CO-PO Mapping CO-PSO Mapping														
		CO-PO Mapping CO-PSO Mapping														
Sl. No	PO1															
CO1	2	3	3	2	1	2	-	2	1	-	-	1	2	3	3	
CO2	3	3	2	1	2	2	-	1	2	-	-	2	1	1	2	
CO3	2	2	1	2	1	2	-	2	1	-	-	1	2	2	1	
CO4	2	3	3	1	2	3	-	2	1	-	-	1	3	1	2	
CO5	2	2	2	2	1	3	-	3	2	-	-	1	3	1	2	
Average	2.2	2.6	2.2	1.6	1.4	2.4	_	2	1.4	-	-	1.2	2.2	1.6	2	
'3'High	I	I	'2'	Mode	erate	1	1	'1' L	ow	l		'-' N	o Corre	lation	1	
Overall CO	Attaiı	ıment										2.37				
PO																
Attainment	1.73	2.05	1.73	1.26	1.10	1.89	-	1.58	1.10	-	-	0.94	1.73	1.26	1.58	

Semester: 6 ^t	th		Subj	ect Na	me: I	Design	of Ste	el Stru	ictures				ct Code			
							C	ourse	Outco	mes						
CO1				nection Gusset			ection	to Gus	set Pla	ate and	Design	of Wel	ded Co	nnection	ı of	
CO2	Analy	se and	l Desi	gn Ax	ially L	oaded	Tensi	on Me	mber	made u	p of An	gle Sec	tion			
CO3	Analy	se and	d Desi	gn Str	ut mac	de up o	of Ang	le Sec	tion an	nd differ	rent bui	lt-up m	ember			
CO4	Solve	Nume	erical	on the	design	n of la	terally	suppo	rted aı	nd unsu	pportec	l beam				
CO5	Solve	olve Numerical on the design of plate girder and gantry girder. CO-PO Manning CO-PSO Manning														
		CO-PO Mapping CO-PSO Mapping														
Sl. No	PO1															
CO1	3	2	3	2	1	2	-	2	1	-	-	1	2	2	3	
CO2	3	3	2	1	2	2	-	1	2	-	-	2	3	3	2	
CO3	3	2	3	3	1	2	-	3	1	-	-	1	2	2	3	
CO4	2	3	3	3	3	3	-	2	1	-	-	2	3	1	2	
CO5	3	2	2	2	2	2	-	3	2	-	-	1	2	3	3	
Average	2.8	2.4	2.6	2.2	1.8	2.2	-	2.2	1.4	-	-	1.4	2.4	2.2	2.6	
'3'High			'2'	Mode	erate			'1' L	OW			'-' N	o Corre	lation	1	
Overall CO	Attaiı	nment										2.56				
PO																
Attainment	2.38	2.04	2.21	1.87	1.53	1.87	-	1.87	1.19	-	-	1.19	2.04	1.87	2.21	

Semester: 6t	h						ATIO CTUR		GINE	ERINC	3 &		t Code			
							Co	ourse	Outco	mes						
CO1		ate wi			ate an	ability	to des	scribe	the nat	tional w	ater po	licy stru	icture a	nd soil	plant	
CO2	Gradu water		ll den	nonstra	ate an	ability	to des	scribe	the bas	sics of r	equirer	nents aı	nd estim	nation o	f crop	
CO3						•	to app	•		-	rrigatio	n water	· manag	ement,	water	
CO4	Gradu	Graduate will demonstrate an ability to design the components of irrigation canal. Graduate will demonstrate an ability to design the various types of hydraulic structure includes														
CO5		Graduate will demonstrate an ability to design the various types of hydraulic structure includes dams, spillways and dissipaters. CO-PO Manning CO-PSO Manning														
		CO-PO Mapping CO-PSO Mapping														
Sl. No	PO1	PO2	P03	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1	2	3	2	2	3	2	1	-	-	_	2	3	3	3	-	
CO2	3	1	1	2	1	2	1	-	-	_	2	3	2	2	1	
CO3	3	3	1	2	2	2	2	-	-	_	2	3	2	1	-	
CO4	2	3	3	2	2	1	1	-	-	_	2	3	2	2	1	
CO5	3	3	2	2	1	1	1	-	-	-	1	3	2	3	2	
Average	2.60	2.60	1.80	2.00	1.80	1.60	1.20	-	-	-	1.80	3.00	2.20	2.20	1.33	
'3'High	I		'2'	Mode	erate		I	'1' Lo	ow	1	ı	'-' No	o Corre	lation		
Overall CO	Attair	ment										2.01				
PO	1.74	1.74	1.21	1.34	1.21	1.07	0.80	-	-	_	1.21	2.01	1.47	1.47	0.89	
Attainment													_			

Semester: 6 ^t	h		Subj	ect Na	me: E	stimat	tion an	d Prof	ession	al Pract	tice		ct Code CETPC6			
							C	ourse	Outco	mes						
CO1		nt is als			stand a	about t	he pre	paratio	on of s	pecifica	ation fo	r mater	ials of c	onstruc	tion	
CO2		nt is al			standd	etailed	l estim	ation (of mat	erial co	nsumpt	ion and	l abstrac	ets for e	ntire	
CO3	Stude	nts are	able	to und	erstan	d the r	ates fo	r diffe	rent it	ems of	works i	ncludin	ıg labou	ır and n	naterial.	
CO4	Stude	nts wi	ll be a	ble to	interp	ret fun	damei	ntal co	ncepts	of valu	ation.					
CO5		Students will be able to understand regarding identification of various legal issues related to construction and application for estimation of buildings. CO-PO Manning CO-PSO Manning														
		CO-PO Mapping CO-PSO Mapping														
Sl. No	PO1															
CO1	3	2	3	2	1	2	3	-	1	-	-	1	2	2	3	
CO2	2	2	2	2	2	3	2	-	2	-	-	3	3	3	2	
CO3	3	2	2	2	1	2	2	-	2	-	-	1	3	2	3	
CO4	2	3	2	3	2	3	2	-	1	-	-	2	3	2	2	
CO5	3	2	3	2	2	2	3	-	2	-	-	2	1	2	3	
Average	2.6	2.2	2.4	2.2	1.6	2.4	2.4	-	1.6	-	-	1.8	2.4	2.2	2.6	
'3'High	1	1	'2'	Mode	erate	1	1	'1' Lo	OW	1	1	'-' N	o Corre	lation	ı	
Overall CO	Attair	ıment										2.50				
PO																
Attainment	2.16	1.83	2	1.83	1.33	2	2	-	1.33	-	-	1.5	2	1.83	2.16	

Semester: 6	th		Subj	ect Na	me: E	Earthqu	ıake E	nginee	ering				et Code			
			1				C	ourse	Outco	mes		1				
CO1	Conc	ept and	d elen	nents o	f earth	ıquake	origir	ı & pro	opagat	ion of s	eismic	waves.				
CO2	Get th	ne deta	ils kn	owled	ge abo	out Typ	es, ef	fects a	nd cor	ıtrolling	g factors	s of ear	thquake	>.		
CO3	Get th	ne deta	ils kn	owled	ge abo	out Typ	es, ef	fects a	nd cor	itrolling	g factors	s of ear	thquake	. .		
CO4	Conc	ept of	Stiffn	ess and	d flexi	bility o	of elas	tic stru	ictures	S.						
CO5	_	Design concept of earthquake resistant and Application of response spectrum theory to seismic design of structures. CO-PO Manning CO-PSO Manning														
		CO-PO Mapping CO-PSO Mapping														
Sl. No	PO1															
CO1	3	2	3	2	1	2	-	-	1	-	-	1	2	2	3	
CO2	3	2	2	2	2	2	-	-	2	-	-	3	3	3	2	
CO3	3	2	3	3	1	2	-	_	1	-	-	1	2	2	3	
CO4	2	3	2	3	3	2	-	-	1	-	-	2	3	2	2	
CO5	3	2	2	2	2	2	-	-	2	-	-	1	2	3	3	
Average	2.8	2.2	2.4	2.4	1.8	2	-	-	1.4	-	-	1.6	2.4	2.4	2.6	
'3'High		1	'2'	Mode	erate			'1' L	ow	I	I	'-' N	o Corre	lation	<u> </u>	
Overall CO	Attair	nment										2.53				
PO																
Attainment	2.36	1.85	2.02	2.02	1.51	1.68	-	-	1.18	-	-	1.3	2.02	2.02	2.19	

Semester: 6 ^t	h		1	ect Na		Vater I	Resour	ce Pla	nning	and		_	et Code			
			1				C	ourse	Outco	mes						
CO1										ill be alund, and			the com	ponents	s of	
CO2	differ		mewo	orks an	ıd appı	roache	s for v					s will be ment, in		ar with	ated	
CO3		-		_	•		-					d the ke				
CO4	1		_	-	_		•	-	-			l be able I manag		oly basic	:	
CO5	1	Understanding of water resources systems: Students will be able to describe the components of vater resources systems, including water supply, demand, and quality. CO-PO Mapping CO-PSO Mapping														
Sl. No	PO1	PO2	P03	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1	3	2	2	2	1	2	-	_	-	1	-	1	2	2	3	
CO2	3	3	3	2	2	1	-	_	-	2	-	2	3	1	2	
CO3	3	2	2	2	3	2	-	_	-	3	-	1	2	3	3	
CO4	2	2	3	2	2	3	-	_	-	1	-	2	3	2	3	
CO5	3	3	2	2	2	2	-	_	-	2	-	3	3	3	3	
Average	2.8	2.4	2.4	2	2	2	-	-	-	1.8	-	1.8	2.6	2.2	2.8	
'3'High			'2'	Mode	erate			'1' L	ow			'-' N	o Corre	lation		
Overall CO	Attaiı	ıment										2.48				
PO Attainment	2 21	1 00	1 00	1 65	1 65	1 65				1.48		1 /10	2.14	1.81	2 21	
Attainment	2.31	1.98	1.98	1.05	1.05	1.05	_	_	_	1.48	_	1.48	2.14	1.01	2.31	

Semester: 6 ^t	h		Subj	ect Na	me: 10	OT							et Code			
							C	ourse	Outco	mes						
CO1				unde n mod		and a	nalyze	loTan	d Char	acteris	tics of a	an IoT, I	Physical	design	with	
CO2	Stude	nt is a	ble to	unde	rstand	regar	ding d	ifferen	t dom	ain spe	cific IoT	s appli	cations.			
CO3	Stude	nts ar	e able	to un	dersta	nd reg	garding	g IOT p	latfor	n desig	n meth	odolog	у.			
CO4	Stude	nts wi	ll be a	ble to	apply	their	knowl	edge I0	OT phy	sical de	evices a	nd end	points.			
CO5		udents will be able to understand regarding use of Big Data and visualization in IOT, Industry 4. ncepts, Python. CO-PO Mapping CO-PSO Mapping														
		CO-PO Mapping CO-PSO Mapping														
Sl. No	PO1															
CO1	3	2	3	2	1	2	2	-	-	-	-	1	2	2	3	
CO2	2	2	2	2	2	2	1	-	-	-	-	3	3	3	2	
CO3	3	2	2	3	1	2	3	-	-	-	-	1	2	2	3	
CO4	2	2	2	2	2	2	2	-	-	-	-	2	3	2	2	
CO5	3	2	3	2	2	2	3	-	-	-	-	2	2	2	2	
Average	2.6	2	2.4	2.2	1.6	2	2.2	-	-	-	-	1.8	2.4	2.2	2.4	
'3'High			'2'	Mode	erate			'1' L	OW	I	I	'-' N	o Corre	lation	•	
Overall CO	Attair	ıment										2.45				
PO																
Attainment	2.12	1.63	1.96	1.79	1.30	1.63	1.79	-	-	-	-	1.47	1.96	1.79	1.96	

Semester: 6	th		Subj	ect Na	ıme: E	Employ	ability	y Skill	-IV				ct Code CEPPC6			
			I				C	ourse	Outco	mes						
CO1			-							nt to m	-		ons both	in forn	nal and	
CO2	refere	ncing	skills.	And a		ney wi	ll have	e learn		nt how t to write	_	-	_	_		
CO3	This u	ınit wi	ll hav	e help	ed stud	dent to	comn	nunica	te with	ı variou	s skills	require	d for jo	b interv	iews.	
CO4	After	After the completion of this unit the students will have learnt to use idioms and phrases in everyday														
CO5	1	After the completion of this unit student will have learnt to use idioms and phrases in everyday conversation.														
		CO-PO Mapping CO-PSO Mapping														
Sl. No	PO1	PO2	P03	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1	-	-	-	-	-	2	2	3	3	3	2	3	-	-	2	
CO2	-	-	-	-	-	2	1	3	3	3	2	3	-	-	2	
CO3	-	-	-	-	-	2	2	3	3	3	2	3	-	-	2	
CO4	-	-	-	-	-	-	2	2	3	3	2	2	-	-	2	
CO5	-	-	-	-	-	-	2	3	3	3	2	2	-	-	2	
Average	-	-	-	-	-	2.00	1.80	2.80	3.00	3.00	2.00	2.60	-	-	2.00	
'3'High	1	1	'2'	Mode	erate	1	1	'1' L	OW	1	1	'-' No	o Corre	lation		
Overall CO	Attair	ıment										2.54				
PO Attainment	-	-	-	-	-	1.69	1.52	2.37	2.54	2.54	1.69	2.20	-	-	1.69	

Semester: 6 ^t	h		Subj	ect Na	me: H	Iydrau	lic Str	ucture	s Desi	gn Prac	tice		ct Code			
							C	ourse	Outco	mes						
CO1	Desig	n the	compo	onents	of irri	gation	canal	includ	es can	al drop	S					
CO2	Desig	n of D	iversi	on He	ad wo	rks										
CO3	Desig	n the	compo	onents	of CD	work	S									
CO4	Desig	n and	detail	ing of	Gravit	y and	Earth	dams								
CO5	Desig	n and	detail	ing of	other l	hydrau	ılic str	ucture	s such	as, spil	lways a	and falls	S			
		CO-PO Mapping CO-PSO Mapping														
Sl. No	PO1	01 PO2 P03 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO														
CO1	2	2	3	2	1	2	-	2	1	-	-	1	2	1	2	
CO2	2	3	2	1	1	3	-	1	2	-	-	2	1	1	2	
CO3	3	3	3	2	2	2	-	2	1	-	-	1	2	2	3	
CO4	2	2	3	1	1	3	-	2	3	-	-	3	3	1	3	
CO5	3	2	3	2	3	2	-	3	2	-	-	1	2	2	3	
Average	2.4	2.4	2.8	1.6	1.6	2.4	-	2	1.8	-	-	1.6	2	1.4	2.6	
'3'High			'2'	Mode	erate			'1' L	ow			'-' N	o Corre	lation		
Overall CO	Attaiı	ıment										2.41				
PO																
Attainment	1.92	1.92	2.24	1.28	1.28	1.92	-	1.60	1.44	-	-	1.28	1.60	1.12	2.08	

Semester: 6	th		Subj	ect Na	me: I	Design	of Ste	el Stru	ictures	practic	e	"	ct Code			
							C	ourse	Outco	mes		1				
CO1	_			nection Gusse		_	ection	to Gus	set Pla	ate and	Design	of Wel	ded Co	nnection	n of	
CO2	Detai	ling of	fdiffe	rent st	ructura	al steel	conn	ections	S.							
CO3	Analy	ze and	d Desi	ign of	colum	ns usii	ng laci	ng and	l batte	ning .						
CO4	Solve	Nume	erical	on the	design	n of la	terally	suppo	orted a	nd unsu	pportec	l beam				
CO5	Solve	Solve Numerical on the design of plate girder and gantry girder. CO-PO Mapping CO-PSO Mappin														
Sl. No	PO1	PO1 PO2 P03 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO														
CO1	3	2	3	2	1	2	-	2	1	-	-	1	2	2	3	
CO2	2	3	2	1	2	2	-	1	2	_	-	2	1	1	2	
CO3	3	2	3	2	1	2	-	2	1	-	-	1	2	2	3	
CO4	2	3	3	1	1	3	-	2	1	-	-	2	3	1	2	
CO5	2	2	2	2	2	2	-	3	2	-	-	1	2	2	3	
Average	2.4	2.4	2.6	1.6	1.4	2.2	-	2	1.4	-	-	1.4	2	1.6	2.6	
'3'High			'2'	' Mode	erate	1		'1' L	ow		-	'-' N	o Corre	lation		
Overall CO	Attai	nment	-									2.44				
PO Attainment	1.95	1.95	2.11	1.30	1.13	1.78	-	1.62	1.13	-	-	1.13	1.62	1.30	2.11	

Semester: 6	th		Subj	ect Na	me: S	emina	r						ct Code CEPPSI			
							C	ourse	Outco	mes		I				
CO1	Unde	rstand	and a	nalyze	resea	rch pa	pers fo	or expl	oring 1	new fiel	ds, in t	he abse	nce of a	text bo	ook, to	
	summ	narize	and re	eview t	hem.											
CO2	Evalu	ate an	d app	ly pror	nising	new d	lirectio	ons of	variou	s cuttin	g edge	technol	ogies.			
CO3	Reme	mber	and cr	eate v	arious	skills	by pre	paring	detail	ed repo	rt desci	ribing tl	he proje	ect and 1	results.	
CO4	Creat	e detai	led re	port de	escribi	ng the	proje	ct and	results	S.						
CO5	Effect	Effectively communicate by making an oral presentation before an evaluation committee.														
		CO-PO Mapping CO-PSO Mapping														
Sl. No	PO1															
CO1	3	3	3	2	1	2	-	2	1	-	-	1	2	3	3	
CO2	1	3	2	1	3	3	-	1	2	-	-	2	1	1	2	
CO3	3	3	3	2	1	2	-	2	1	-	-	1	2	2	3	
CO4	2	3	3	3	3	3	-	2	1	-	-	1	3	1	2	
CO5	3	2	3	2	1	2	-	3	2	-	-	1	2	3	3	
Average	2.4	2.8	2.8	2	1.8	2.4	-	2	1.4	-	-	1.2	2	2	2.6	
'3'High	•		'2'	Mode	erate			'1' L	ow			'-' N	o Corre	lation		
Overall CO	Attair	ıment	:									2.40				
PO																
Attainment	1.92	2.24	2.24	1.6	1.44	1.92	-	1.6	1.12	-	-	0.96	1.6	1.6	2.08	

Semester: 6 ^t	h		Subj	ect Na	me: N	Iini pr	oject-	III					ct Code CEPPSI			
			•				C	ourse	Outco	mes		1				
CO1	Have	a good	d unde	erstand	ling of	the fu	ındame	ental is	ssues a	nd chal	lenges	of macl	nine lea	rning: c	lata,	
	mode	l selec	tion, 1	nodel	compl	exity,	etc.									
CO2	Apply	ing m	athem	natical	relatio	nship	s withi	in and	across	Machin	ne Lear	ning al	gorithm	s and th	ne	
	parad	igms o	of supe	ervised	d and u	ın-sup	ervise	d learn	ing							
CO3	Analy	se lear	rning	algorit	thms w	which a	are mo	re app	ropriat	te for va	arious t	ypes of	learnin	g tasks	in	
	variou	ıs dom	nains.													
CO4	Evalu	valuate models generated from data and optimize the models learned														
CO5	Desig	Design and implement various machine learning algorithms in a range of real-world applications														
					(CO-PC) Map	ping					CO-F	SO Ma	apping	
Sl. No	PO1	PO2	P03	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1	3	3	2	2	3	2	-	2	1	-	-	1	2	1	3	
CO2	2	3	2	1	1	3	-	1	2	-	_	2	1	1	2	
CO3	3	2	3	2	3	2	-	2	1	-	_	1	2	2	3	
CO4	2	3	3	1	1	3	-	2	1	-	-	1	3	1	2	
CO5	3	3	3	2	1	2	_	2	1	-	_	1	2	2	3	
Average	2.6	2.8	2.6	1.6	1.8	2.4	-	1.8	1.2	-	-	1.2	2	1.4	2.6	
'3'High	l	<u> </u>	'2'	Mode	erate	1	1	'1' L	ow	l		'-' N	o Corre	lation	<u> </u>	
Overall CO	Attair	ment										2.38				
PO																
Attainment	2.06	2.22	2.06	1.26	1.42	1.90	_	1.42	0.95	-	-	0.95	1.58	1.11	2.06	

Semester: 7	th		Subj	ect Na	me: C)rgani	zation	al Bel	haviou	ır		Subjec	t Code	: 20BTT	HS703	
							C	ourse	Outco	mes		1				
CO1	_					naviou:			-	as influ	enced b	y diver	sity, eth	nics, cul	ture,	
CO2	1				-					ndividuce and s			al theor	ies that	lead to	
CO3				-	_	sses us		levelo	ping c	ommun	ication	and dec	cision n	naking b	у	
CO4	1	s grou		amics	and de	emons	trate sl	kills re	quired	l for wo	rking i	n forma	l and in	formal	groups	
CO5	Underwork.															
		CO-PO Mapping CO-PSO Mapping														
Sl. No	PO1	PO2	P03	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1	-	-	-	-	-	1	1	3	3	3	1	3	-	1	1	
CO2	-	-	-	-	-	1	1	3	3	3	1	3	-	1	1	
CO3	-	-	-	-	-	1	1	3	3	2	2	2	-	1	2	
CO4	-	-	-	-	-	1	1	3	2	3	2	3	-	2	1	
CO5	-	-	-	-	-	1	1	3	3	3	1	3	-	2	1	
Average	-	-	-	-	-	1	1	3	2.8	2.8	1.4	2.8	-	1.4	1.2	
'3'High		<u> </u>	'2'	Mode	erate	<u> </u>	<u> </u>	'1' L	ow		I	'-' N	o Corre	lation		
Overall CO	Attair	nment	•									2.42				
PO Attainment	-	-	-	-	-	0.81	0.81	2.42	2.26	2.26	1.13	2.26	-	1.13	0.97	

Semester: 7 ^t	h		Subj	ect Na	me: T	ransp	ortati	on En	gineeı	ing-II			t Code			
							Co	ourse	Outco	mes						
CO1	l						nalyse of Airp			_	lesign,	constru	ction ar	nd main	tenance	
CO2	I	nt is		to unc	lerstan	id reg	arding	the 1	basic	procedu	ire of	railway	constr	ruction	and its	
CO3	Stude	nts are	able	to und	erstan	d rega	rding t	he pla	nning	of airpo	ort and	its com	onents	in layo	ut.	
CO4		tudents will be able to apply their knowledge in airport design and understood the basic needs in airport construction. tudents will be able to understand regarding the planning & design of harbour and other costal														
CO5		ructures.														
		CO-PO Mapping CO-PSO Mapping														
Sl. No	PO1	PO2	P03	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1	3	3	3	2	2	3	2	2	-	-	-	2	2	1	-	
CO2	3	3	3	3	2	2	2	2	-	-	-	2	2	2	-	
CO3	3	2	2	2	2	3	2	2	-	-	-	2	3	2	-	
CO4	2	3	3	3	3	2	2	1	-	-	-	2	2	1	-	
CO5	3	2	3	2	3	3	2	2	-	-	-	1	2	2	-	
Average	2.8	2.6	2.8	2.4	2.4	2.6	2	1.8	-	-	-	1.8	2.2	1.6	-	
'3'High	I	ı	'2'	Mode	erate	l	1	'1' L	ow	I	l	'-' N	o Corre	lation		
Overall CO	Attair	ıment										2.43				
PO Attainment	2.27	2.11	2.27	1.94	1.94	2.11	1.62	1.46	-	-	-	1.46	1.78	1.30	-	

Semester: 7 ^t	h		Subj	ect Na	me: P	re-str	essed	Conci	ete			•	ct Code ETPE71			
			1				C	ourse	Outco	mes		<u>I</u>				
CO1		out the		-	estress	sed coi	ncrete	and er	hance	its con	cepts, v	vhich ir	nclude p	ore and p	oost	
CO2	Analy	se and	desig	gn the	statica	lly det	ermin	ate pre	estresse	ed conc	rete me	mbers.				
CO3	Desig	n the	end bl	ocks o	f prest	ressed	concr	ete me	mbers	S.						
CO4	Analy	se and	desig	gn the	statica	lly ind	leterm	inate p	restres	ssed co	ncrete r	nember	S.			
CO5	Desig	sign the composite structures using prestressed concrete techniques. CO-PO Mapping CO-PSO Mapping														
		CO-PO Mapping CO-PSO Mapping														
Sl. No	PO1	1 PO2 P03 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO3														
CO1	3	3	3	2	2	3	-	2	-	-	2	3	2	2	-	
CO2	3	3	3	3	2	3	-	2	-	-	2	2	1	3	-	
CO3	3	2	2	2	2	2	-	2	-	-	2	3	2	3	-	
CO4	2	2	3	3	2	3	-	1	-	-	2	3	2	2	-	
CO5	3	3	3	2	3	3	-	2	-	1	1	3	1	3	-	
Average	2.8	2.6	2.8	2.4	2.2	2.8	-	1.8	-	0.2	1.8	2.8	1.6	2.6	_	
'3'High			'2'	Mode	erate	l		'1' L	OW			'-' N	o Corre	lation		
Overall CO	Attair	ıment										2.46				
PO Attainment	2.30	2.13	2.30	1.97	1.80	2.30	0.00	1.48	0.00	0.16	1.48	2.30	1.31	2.13	0.00	

Semester: 7 ^t	h		Subj	ect Na	me: D	isaste	r Man	agem	ent			Subject 20BTCI	et Code ETOE70			
							Co	ourse	Outco	mes		I				
CO1	Unde	rstand	the ne	eed and	d signi	ficanc	e of st	udying	g disas	ter man	agemer	nt				
CO2	Unde	rstand	the di	fferen	t types	of dis	asters	and ca	uses f	or disas	sters.					
CO3	Gain 1	knowl	edge o	on the	impac	ts Disa	asters o	on env	ironm	ent and	society					
CO4	Study	and a	ssess	vulner	ability	of a g	eograp	hical	area							
CO5	Under	CO-PO Mapping CO-PSO Mapping CO-PSO Mapping														
Sl. No	PO1															
CO1	2	2	2	3	3	1	1	3	3	2	-	2	0	3	-	
CO2	2	3	3	2	2	1	-	3	2	2	-	2	0	3	-	
CO3	2	3	3	3	3	1	1	3	3	3	-	1	0	3	-	
CO4	2	3	2	3	3	-	2	3	2	3	-	2	0	3	-	
CO5	2	3	3	3	2	1	2	3	2	2	-	2	0	2	-	
Average	2	2.8	2.6	2.8	2.6	0.8	1.2	3	2.4	2.4	-	1.8	0	2.8	-	
'3'High		l	'2'	Mode	erate			'1' Lo	OW			'-' No	o Corre	lation		
Overall CO	Attair	ıment										2.51				
PO Attainment	1.67	2.34	2.18	2.34	2.18	0.67	1.00	2.51	2.01	2.01	-	1.51	-	2.34	-	

Semester: 7	th		Subj	ect Na	me: E	Entrep	reneu	rship	Devel	opment	-	Subjec	t Code	: 20BTT	ГНЅ706	
							C	ourse	Outco	mes						
CO1	1	the vaficatio		conce	epts re	lated to	o entre	prene	ırship	and ent	reprene	eurship	and kno	ow their		
CO2	Able	to iden	ntify o	pportu	ınities	in the	marke	t acco	rding t	to the en	ntreprer	neurial	environ	ments.		
CO3	Get kr	owled	ge abo	out the	capita	I flow a	ınd its ı	manag	ement	to start	up and	run a bu	siness.			
CO4	Identi	fy the	short	falls ar	nd cau	ses of	busine	ss fail	ures.							
CO5	Get kr	Get knowledge about different policies made by Government and other regulatory authorities. CO. P.O. Manning														
		CO-PO Mapping CO-PSO Mapping														
Sl. No	PO1	PO1 PO2 P03 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO													PSO3	
CO1	1	3	3	2	3	1	1	3	3	2	2	2	-	3	3	
CO2	2	3	3	3	2	-	2	3	2	3	2	3	-	2	3	
CO3	2	3	3	2	3	2	1	3	3	2	2	3	-	2	3	
CO4	2	2	2	2	2	1	-	3	3	3	2	3	-	3	3	
CO5	2	3	2	3	3	1	3	2	3	2	1	3	-	2	3	
Average	1.8	2.8	2.6	2.4	2.6	1	1.4	2.8	2.8	2.4	1.8	2.8	-	2.4	3	
'3'High	1	•	'2'	Mode	erate			'1' Lo	OW	1		'-' N	o Corre	lation		
Overall CO	Attair	ıment										2.51				
PO Attainment	1.51	2.34	2.18	2.01	2.18	0.84	1.17	2.34	2.34	2.01	1.51	2.34	-	2.01	2.51	

Semester: 7 ^t	h				me: C Ianag		uction t	Equi	pment	and			t Code			
							C	ourse	Outco	mes						
CO1	1 -	in the			ions, a	nd sel	ection	criteri	a of co	onstruct	ion equ	ipment	used in	various	S	
CO2			•		•		•			nstructi enance.	on equi	pment,	conside	ering fa	ctors	
CO3	1	-	_				opriat			n equip	ment b	ased on	project	t require	ements,	
CO4		apply planning and scheduling techniques, such as CPM and PERT, to optimize equipment usage and project timelines. Assess the economic aspects of equipment ownership, rental, and maintenance, ensuring cost-														
CO5	1	Assess the economic aspects of equipment ownership, rental, and maintenance, ensuring cost- ffective construction operations. CO-PO Mapping CO-PSO Mapping														
					(CO-PC) Map	ping					CO-P	SO Ma	pping	
Sl. No	PO1	PO2	P03	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1	3	3	3	2	2	1	1	1	3	2	3	2	2	2	-	
CO2	3	3	3	3	2	2	-	1	2	2	3	2	1	3	-	
CO3	3	2	2	2	2	0	1	-	2	2	3	2	2	2	-	
CO4	2	3	3	3	3	1	1	1	2	2	3	2	2	2	-	
CO5	3	2	3	2	3	2	1	1	2	2	2	1	1	3	-	
Average	2.8	2.6	2.8	2.4	2.4	1.2	0.8	0.8	2.2	2	2.8	1.8	1.6	2.4	-	
'3'High	1	I	'2'	Mode	erate	I	l .	'1' Lo	ow	I		'-' No	o Corre	lation	I	
Overall CO	Attair	ment										2.48				
PO Attainment	2.31	2.15	2.31	1.98	1.98	0.99	0.66	0.66	1.82	1.65	2.31	1.49	1.32	1.98	-	

Semester: 7 ^t	h		Subj	ect Na	me: I	ndusti	rial Le	ecture	and V	isit		Subject Code:2		EPPSI	711	
							C	ourse	Outco	mes		<u>I</u>				
CO1	I											where texposure		n enhand	ce their	
CO2	Unde	rstand	and a	pply sl	kills to	enhar	nce stu	dents'	know	ledge ir	one pa	articulai	r techno	ology		
CO3	I	rstand own pr	-		ractica	ıl skill	s to In	crease	self-co	onfiden	ce of st	udents	and hel	ps in fin	nding	
CO4	Unde	rstand	and e	valuat	e leade	ership	ability	and re	espons	ibility t	o perfo	rm or e	xecute 1	the give	n task.	
CO5		nderstand and evaluate the industrial exposure to provide learners hands on practice within a real b situation. CO-PO Mapping CO-PSO Mapping														
		CO-PO Mapping CO-PSO Mapping														
Sl. No	PO1	PO2	P03	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1	3	3	3	2	2	2	1	3	-	-	1	3	1	2	-	
CO2	3	3	3	3	2	2	2	3	-	-	2	2	2	2	-	
CO3	3	2	2	2	2	2	1	2	-	-	1	3	1	3	-	
CO4	2	2	3	3	3	2	-	3	-	-	1	2	1	3	-	
CO5	3	3	3	2	3	3	1	3	-	-	2	2	2	3	-	
Average	2.8	2.6	2.8	2.4	2.4	2.2	1	2.8	-	-	1.4	2.4	1.4	2.6	-	
'3'High	I	I	'2'	Mode	erate	I	ı	'1' Lo	ow	I	I	'-' No	o Corre	lation	I	
Overall CO	Attair	ıment										2.45				
PO Attainment	2.29	2.12	2.29	1.96	1.96	1.80	0.82	2.29	-	-	1.14	1.96	1.14	2.12	-	

Semester: 7 ^t	h		Subj	ect Na	me: S	Summ	er Int	ernshi	p			Subjec	ct Code	:		
												20BTC	CEPPSI	1709		
							C	ourse	Outco	mes						
CO1												where texposur		n enhand	ce their	
CO2	Unde	rstand	and a	pply sl	cills to	enhar	nce stu	dents'	know	ledge in	n one pa	articulai	r techno	ology		
CO3		rstand own pr	-		ractica	ıl skill:	s to In	crease	self-co	onfiden	ce of st	udents	and help	os in fin	ding	
CO4	Unde	rstand	and e	valuate	e leade	ership	ability	and re	espons	ibility t	o perfo	rm or e	xecute t	the give	n task.	
CO5		Inderstand and evaluate the industrial exposure to provide learners hands on practice within a real ob situation. CO-PO Mapping CO-PSO Mapping														
		CO-PO Mapping CO-PSO Mapping														
Sl. No	PO1	PO2	P03	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1	3	3	3	2	2	2	1	3	-	2	-	3	1	2	-	
CO2	3	3	3	3	2	2	2	3	-	3	-	2	2	2	-	
CO3	3	2	2	2	2	2	1	2	-	2	-	3	1	3	-	
CO4	2	2	3	3	3	2	-	3	-	3	-	2	1	3	-	
CO5	3	3	3	2	3	3	1	3	-	2	-	2	2	3	-	
Average	2.8	2.6	2.8	2.4	2.4	2.2	1	2.8	-	2.4	-	2.4	1.4	2.6	-	
'3'High			'2'	Mode	erate			'1' Lo	ow			'-' No	o Corre	lation		
Overall CO	Attair	ıment										2.49				
PO Attainment	2.32	2.16	2.32	1.99	1.99	1.83	0.83	2.32	-	1.99	-	1.99	1.16	2.16	-	

Semester: 7 ^t	h		Subj	ect Na	me: C	Compr	ehens	ive Vi	va Vo	ce		•	t Code EPPSI71			
							C	ourse	Outco	mes		l				
CO1	1		_	gh und nrough		_		concep	ots, the	eories, a	nd app	lication	s related	d to the		
CO2	Apply	analy	tical a	and cri	tical tl	ninkin	g skills	s to so	lve tec	hnical a	and real	l-world	probler	ns effec	tively.	
CO3	1	nt idea		arly an	d conf	fidentl	y whil	e answ	ering	technica	al and c	concept	ual ques	stions d	uring	
CO4	_			dge fro		ltiple	subjec	ts to p	rovide	well-ro	ounded	solution	ns to en	gineerin	g and	
CO5	1	emonstrate awareness of professional responsibilities, ethical considerations, and industry ctices relevant to the field CO-PO Mapping CO-PSO Mapping														
		CO-PO Mapping CO-PSO Mapping														
Sl. No	PO1	PO2	P03	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1	3	3	3	2	2	2	-	2	3	2	3	2	2	3	-	
CO2	3	3	3	3	2	2	-	2	3	3	3	2	3	3	-	
CO3	3	2	2	2	2	1	-	2	3	3	3	2	2	3	-	
CO4	2	3	3	3	3	2	-	1	3	3	3	2	2	2	-	
CO5	3	2	3	2	3	-	-	2	2	3	2	1	1	3	-	
Average	2.8	2.6	2.8	2.4	2.4	1.4	-	1.8	2.8	2.8	2.8	1.8	2	2.8	-	
'3'High	<u>I</u>	<u> </u>	'2'	Mode	erate	<u> </u>	l	'1' Lo	ow		<u> </u>	'-' No	o Corre	lation		
Overall CO	Attair	ment										2.37				
PO Attainment	2.21	2.05	2.21	1.90	1.90	1.11	-	1.42	2.21	2.21	2.21	1.42	1.58	2.21	-	

Semester: 7	th		Subj	ect Na	me: N	linor	Projec	et					t Code			
							C	ourse	Outco	mes						
CO1	Identi	fy an o	open-	ended	proble	m in a	rea of	civil e	ngine	ering wl	hich rec	quires fi	ırther in	nvestiga	tion.	
CO2	Identi	fy the	metho	ods and	d mate	rials r	equire	d for tl	ne pro	ject wo	rk.					
CO3	Mana	ge the	work	with t	eam m	embe	rs.									
CO4	Form	ulate a	nd im	pleme	nt inno	ovative	e ideas	for so	cial ar	nd envir	onmen	tal bene	efits.			
CO5	_	nalyse the results to come out with concrete solutions. Write technical report of the project apart om developing a presentation. CO-PO Mapping CO-PSO Mapping														
		CO-PO Mapping CO-PSO Mapping														
Sl. No	PO1															
CO1	3	3	3	2	2	1	-	3	3	3	2	2	2	3	-	
CO2	3	3	3	3	2	1	-	3	2	3	2	1	2	3	-	
CO3	3	2	2	2	2	-	-	2	3	3	3	-	1	3	-	
CO4	2	3	3	3	3	1	-	2	3	3	2	1	3	2	-	
CO5	3	2	3	2	3	1	-	3	3	3	2	1	1	3	-	
Average	2.8	2.6	2.8	2.4	2.4	0.8	-	2.6	2.8	3	2.2	1	1.8	2.8	-	
'3'High			'2'	Mode	erate			'1' Lo	OW		L	'-' No	o Corre	lation	L	
Overall CO	Attair	ment										2.47				
PO Attainment	2.31	2.14	2.31	1.98	1.98	0.66	-	2.14	2.31	2.47	1.81	0.82	1.48	2.31	-	

Semester: 8 ^t	h		Subj	ect Na	me: N	Iajor	Projec	et					ct Code		
							Co	ourse	Outco	mes		I			
CO1	1 -	•								nanager ormulat					
CO2							t mana olicabl		ill be a	ble to c	ompile	the rele	evant lit	terature	and
CO3					-			_		ble to p		esearch	design	includir	ng the
CO4	For a selected research topic, student manager will be able to compile relevant data, interpret & analyse it and test the hypotheses wherever applicable														
CO5	Based on the analysis and interpretation of the data collected, student manager will be able to arrive at logical conclusions and propose suitable recommendations on the research problem														
					(CO-PC) Map	ping					CO-P	SO Ma	pping
Sl. No	PO1	PO2	P03	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	3	2	2	-	1	3	3	3	2	2	2	3	-
CO2	3	3	3	3	2	-	1	3	2	3	2	1	2	3	-
CO3	3	2	2	2	2	-	1	2	3	3	3	-	1	3	-
CO4	2	3	3	3	3	-	-	2	3	3	2	1	3	2	-
CO5	3	2	3	2	3	-	1	3	3	3	2	1	1	3	-
Average	2.8	2.6	2.8	2.4	2.4	-	0.8	2.6	2.8	3	2.2	1	1.8	2.8	-
'3'High	I	l	'2'	Mode	erate	l	I	'1' Lo	OW	I		'-' N	o Corre	lation	1
Overall CO	Attair	ment										2.42			
PO Attainment	2.26	2.10	2.26	1.94	1.94	-	0.65	2.10	2.26	2.42	1.77	0.81	1.45	2.26	-

Semester: 8 ^t	h		Subj	ect Na	me: 1	ntern	ship						t Code		
							C	ourse	Outco	mes		<u> </u>			
CO1	struct		oduct	s / serv	vices c	_			-	_			-	agement his / he	
CO2		is / her rtunitio	_				ip, the	stude	nt is al	ble to as	ssess its	Streng	ths, We	eakness	es,
CO3		nt is al ticular					_	and fi	uture p	otentia	l for his	/ her in	nternshi	p organ	ization
CO4		nt is al						ng in p	ractic	al situa	tions by	accom	plishin	g the tas	sks
CO5										manage		-			
					(CO-PC) Map	ping					CO-P	SO Ma	pping
Sl. No	PO1	PO2	P03	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	3	2	2	2	1	3	-	2	-	3	1	2	-
CO2	3	3	3	3	2	2	2	3	-	3	-	2	2	2	-
CO3	3	2	2	2	2	2	1	2	-	2	-	3	1	3	-
CO4	2	2	3	3	3	2	-	3	-	3	-	2	1	3	-
CO5	3	3	3	2	3	3	1	3	-	2	-	2	2	3	-
Average	2.8	2.6	2.8	2.4	2.4	2.2	1	2.8	-	2.4	-	2.4	1.4	2.6	-
'3'High	I.	I	'2'	Mode	erate	I	I	'1' Lo	ow	I		'-' No	o Corre	lation	I
Overall CO	Attair	ıment										2.41			
PO Attainment	2.25	2.09	2.25	1.93	1.93	1.77	0.80	2.25	-	1.93	-	1.93	1.12	2.09	-

Semester: 8 ^t	h		Subj	ect Na	me: P	roject	Viva V	Voice					et Code EPPSI80		
							Co	ourse	Outco	mes					
CO1	1 -	in the	•	tives, 1	nethod	dology	, impl	ementa	ation, a	and out	comes	of the p	roject w	vith clar	ity and
CO2	l	_		g cond	_		ch met	hodolo	gies, a	and pro	blem-so	olving to	echniqu	es to de	evelop
CO3				ed and		-	resenta	ition o	f the p	roject v	vork, re	spondii	ng effec	tively to	0
CO4		Demonstrate the ability to work collaboratively in a team environment, effectively distributing tasks and integrating individual contributions into the final project.													
CO5	Exhibit awareness of ethical, social, and environmental considerations related to the project, ensuring responsible and sustainable practices.														
					(CO-PC) Map	ping					CO-P	SO Ma	pping
Sl. No	PO1	PO2	P03	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	3	2	2	2	-	2	3	2	3	2	2	3	-
CO2	3	3	3	3	2	2	-	2	3	3	3	2	3	3	-
CO3	3	2	2	2	2	1	-	2	3	3	3	2	2	3	-
CO4	2	3	3	3	3	2	-	1	3	3	3	2	2	2	-
CO5	3	2	3	2	3	-	-	2	2	3	2	1	1	3	-
Average	2.8	2.6	2.8	2.4	2.4	1.4	-	1.8	2.8	2.8	2.8	1.8	2	2.8	-
'3'High	1	1	'2'	Mode	erate	1	1	'1' Lo	ow	1		'-' No	o Corre	lation	
Overall CO	Attair	ment										2.43			
PO Attainment	t 2.27 2.11 2.27 1.94 1.94 1.13 - 1.46 2.27 2.27 2.27 1.46 1.62 2.27 -														

Articulation matrix

Sl.	Subject Name												
no		PO1	PO2	PO3	PO4	P05	P06	PO7	PO8	PO9	PO10	PO11	PO12
1	Engineering Mathematics - I	2.4	2.6	2.4	2.2	-	-	-	-	-	-	-	-
2	Engineering Physics	2.6	2	1.6	2.2	2.2	1.4	1.2	-	-	-	-	2
3	Basic Electrical Engineering	2.40	1.4	2.0	2.2	2.8	-	-	-	-	-	-	1.40
4	Basic Mechanical Engineering	2.2	2.6	2.8	2	2.8	-	-	-	-	-	-	3
5	Communicative English	-	-	-	-	-	2.0	1.8	2. 80	3.0	3.0	2.0	2.60
6	Physics Lab	1.6	1.6	1.4	1.8	0.8	0.6	-	-	-	-	-	-
7	Basic Electrical Engineering Lab	2	1.4	1.4	1.4	1.6	1.4	1.4	-	2.6	1.6	-	1.4
8	Basic Mechanical Engineering Lab	1.6	1.4	1.6	1.4	1.4	-	-	-	2.8	2.6	1.6	-
9	Engineering Graphics & Design Lab	3	1.2	2.2	1	1.4	3	-	-	1	0.4	-	1.8
10	English Language Laboratory	-	-	-	-	-	2	2	2	3	3	3	2.2
11	Engineering Mathematics II	2.4	2.4	2.4	2	-	-	-	-	-	-	-	-
12	Engineering Chemistry	3	2	3	3	3	2	2	-	-	1	1	3
13	Basic Electronics Engineering	3	2.6	2	1.8	2	1	1	1	1.8	1.2	1.2	2
14	Basic Civil Engineering	3	1.8	1.2	1.4	2.4	-	-	-	1.4	1.8	1	2.4
15	Programming for Problem Solving using 'C'	2.8	3	2.6	2	2.7 5	-	-	-	-	-	-	3
16	Engineering Mechanics	2.80	2.6	2.6	2.2	2.2	1.6 7	1.3	-	-	-	1.5	1.50

17	Business Communication and life Skills	-	-	-	-	-	2.0	1.8	2. 80	3.0	3.0	2.0	2.60
18	Chemistry Lab	2.2	2.2	1.6	2.4	2.4	1.2	0.4	0. 4	1.8	1.6	0.4	1.2
19	Basic Electronics Engineering Lab	3	2.6	2.6	2.2	2.8	-	-	-	1.2	1.2	-	2.6
20	Basic Civil Engineering Lab	3	1.2	2.2	1	2	3	-	-	1	0.4	-	1.8
21	Workshop	2	1.8	2.6	1.6	2.4	1.6	1.6	-	2.8	2.6	-	2.6
22	Programming for Problem Solving using 'Python' Lab	3	2.2	2.4	2.2	2.6	-	-	-	1.2	1	2.4	1.4
23	Data Structure Using 'C'	2.4	2.6	3	2.4	1	1.2	-	-	-	-	-	0.8
24	Mechanics Of Solid	3	2.8	3	2.4	2	1.4	1.6	1	1	1	1.6	3
25	Fluid Mechanics And Hydraulic Machines	3	3	2.8	2.6	2	1.4	1.6	1. 5	1	1	1.6	3
26	Geotechnical Engineering	2.80	2.6	2.4	2.2	2.2	1.6 7	1.6 7	-	-	-	1.5	1.75
27	Surveying	3	3	2.6	2.6	2.2	2.2	2	1	1	-	1.6	3
28	Employability Skill-I	-	-	-	-	-	2.0	1.8	2. 80	3.0	3.0	2.0	2.60
29	Environmental Science & Engineering	-	-	-	-	-	3	3	2. 4	1.8	1.8	2	3
30	Universal Human Values	-	-	-	-	-	2.6	3	2. 4	2.2	2	2.4	2.6
31	Fluid Mechanics & Hydraulic Machines Lab	3	2.6	2	2.4	2	1.6	1	1. 5	1	1	2.4	2.6
32	Data Structure Using 'C' Lab	2	3	2.8	-	-	1.2	-	-	-	-	-	0.8
33	Geotechnical Engineering Lab	3	2.6	2	2.4	2	1.6	1	1. 5	1	1	2.4	2.6
34	Survey Field Work	2.8	2.8	2.6	2.2	2.6	1	1	3	1.8	1.6	1.4	3
35	Engineering	2.4	2.4	2.2	2.2	-	-	-	-	-	-	-	-

	Mathematics III												
36	Structural Analysis-I	2.8	2.6	2.8	2.8	2.4	2	1.4	-	2	1	1.2	2.8
37	Transportation Engineering-I	3	2.4	2.6	3	2.6	2	1.6	-	2	1	1.2	2.8
38	Water and Waste Water Engineering	3	2.6	2.8	2.8	2.8	1.8	1.6	-	1.6	-	1.2	2.6
39	Employability Skill-II	-	-	-	-	-	2.6	3	2. 8	2.2	3	2.4	2
40	Concrete Technology	3	2.6	2.6	3	2.6	2	1.6	-	-	1	1.2	2.8
41	Engineering Economics and Costing	-	-	-	-	-	_	1.6	1.	1.4	1.4	1.2	1.6
42	Constitution Of India	-	-	-	-	-	2	1	3	1	2	1	1
43	Transportation Engineering-Lab	3	2.4	2.6	3	2.6	2	1.6	-	2	1	1.2	2.8
44	Environmental Engineering Lab	3	2.6	2.6	3	2.6	2	1.6	-	1.6	1	1.2	2.8
45	Civil Engineering Drawing	2	1.2	1	1	-	-	-	-	1.4	-	2	-
46	Mini Project I	3	3	2.6	2.6	2.4	3	2	2. 2	3	2.4	3	2.4
47	Structural Analysis-II	2.2	2.8	2.4	1.6	1.4	2.4	-	2	-	-	2	1.2
48	Design of Concrete Structures	2.4	2.4	2.8	2.2	1.8	2.2	-	2. 4	2	-	-	1.2
49	Hydrology and Open Channel Hydraulics	2.6	3	2.8	1.6	1.6	2.4	-	-	1.4	-	-	1.6
50	Foundation Engineering	2.6	2.6	2.4	2	1	2.4	2.4	-	1.4	-	-	1.6
51	Solid Waste Management	2.8	2.6	2.8	2	1.8	2.2	-	2	_	-	-	1.6
52	Employability Skill- III	-	-	-	-	-	2.2	3	2. 2	1.6	3	3	1.2
53	Essence of Indian Knowledge and Tradition-I	-	-	-	-	-	2	2.6	2. 8	1.6	2.6	1.8	1.2
54	Structural Engineering Lab	2.6	2.6	2.6	2.2	1.4	2.4	-	2	2	-	-	1.2

55	Design of Concrete Structures Practice	2.8	2.6	2.8	1.8	1.8	2.4	-	2. 4	1.6	_	-	1.2
56	Concrete Technology Lab	2.6	2.8	2.8	1.6	1	2.4	-	2	1.4	-	-	1.2
57	Evaluation of Summer Internship	2.8	2.8	2.6	2	2.6	2.4	1	2	2	-	1.2	1.2
58	Mini Project II	2.2	2.6	2.2	1.6	1.4	2.4	-	2	1.4	-	-	1.2
59	Design of Steel Structures	2.8	2.4	2.6	2.2	1.8	2.2	-	2. 2	1.4	-	-	1.4
60	Irrigation Engineering & Hydraulic Structures	2.60	2.6	1.8	2.0	1.8	1.6	1.2	1	-	-	1.8	3.00
61	Estimation and Professional Practice	2.6	2.2	2.4	2.2	1.6	2.4	2.4	-	1.6	-	-	1.8
62	Earthquake Engineering	2.8	2.2	2.4	2.4	1.8	2	-	-	1.4	-	-	1.6
63	Water Resource Planning and Management	2.8	2.4	2.4	2	2	2	-	-	-	1.8	-	1.8
64	Internet of things	2.6	2	2.4	2.2	1.6	2	2.2	-	-	-	-	1.8
65	Employability Skill- IV	-	-	-	-	-	2.0	1.8	2. 80	3.0	3.0	2.0	2.60
66	Hydraulic Structures Design Practice	2.4	2.4	2.8	1.6	1.6	2.4	-	2	1.8	-	-	1.6
67	Design of Steel Structures practice	2.4	2.4	2.6	1.6	1.4	2.2	-	2	1.4	-	-	1.4
68	Seminar	2.4	2.8	2.8	2	1.8	2.4	-	2	1.4	-	-	1.2
69	Mini project-III	2.6	2.8	2.6	1.6	1.8	2.4	-	1. 8	1.2	-	-	1.2
70	Organizational Behaviour	-	-	-	-	-	1	1	3	2.8	2.8	1.4	2.8
71	Transportation Engineering–II	2.8	2.6	2.8	2.4	2.4	2.6	2	1. 8	-	-	-	1.8
72	Pre-stressed Concrete	2.8	2.6	2.8	2.4	2.2	2.8	-	1. 8	-	0.2	1.8	2.8
73	Disaster Management	2	2.8	2.6	2.8	2.6	0.8	1.2	3	2.4	2.4	-	1.8

74	Entrepreneurship Development	1.8	2.8	2.6	2.4	2.6	1	1.4	2. 8	2.8	2.4	1.8	2.8
75	Construction Equipment and Planning Management	2.8	2.6	2.8	2.4	2.4	1.2	0.8	0. 8	2.2	2	2.8	1.8
76	Industrial Lecture and Visit	2.8	2.6	2.8	2.4	2.4	2.2	1	2. 8	-	-	1.4	2.4
77	Summer Internship	2.8	2.6	2.8	2.4	2.4	2.2	1	2. 8	-	2.4	-	2.4
78	Comprehensive Viva Voce	2.8	2.6	2.8	2.4	2.4	1.4	-	1. 8	2.8	2.8	2.8	1.8
79	Minor Project	2.8	2.6	2.8	2.4	2.4	0.8	-	2. 6	2.8	3	2.2	1
80	Major Project	2.8	2.6	2.8	2.4	2.4	-	0.8	2. 6	2.8	3	2.2	1
81	Internship	2.8	2.6	2.8	2.4	2.4	2.2	1	2. 8	-	2.4	ı	2.4
82	Project Viva Voice	2.8	2.6	2.8	2.4	2.4	1.4	-	1. 8	2.8	2.8	2.8	1.8
	Average	2.63	2.43	2.46	2.1	2.09	1.9 4	1.6 2	2. 14	1.8 9	1.9 0	1.8 0	2.01
	Target	2.10	1.94	1.97	1.7	1.67	1.5 5	1.3	1. 71	1.5	1.5	1.4	1.61

Sl.no	Subject name	PSO1	PSO2	PSO3
1	Engineering Mathematics - I	2	2.6	-
2	Engineering Physics	1.2	1.2	-
3	Basic Electrical Engineering	2.80	2.40	-
4	Basic Mechanical Engineering	2.8	2.6	2.2
5	Communicative English	-	-	2.00
6	Physics Lab	0.4	1.8	-

7	Basic Electrical Engineering Lab	3	2.2	1.4
8	Basic Mechanical Engineering Lab	2.4	1.6	-
9	Engineering Graphics & Design Lab	2.2	-	1.4
10	English Language Laboratory	-	-	2
11	Engineering Mathematics Ii	1.8	1.4	-
12	Engineering Chemistry	1.2	1.2	-
13	Basic Electronics Engineering	3	1.8	1.8
14	Basic Civil Engineering	2.2	-	2
15	Programming For Problem Solving Using 'C'	2.6	2.4	2
16	Engineering Mechanics	2.20	2.40	-
17	Business Communication And Life Skills	-	-	2.00
18	Chemistry Lab	0.4	1.8	-
19	Basic Electronics Engineering Lab	3	2.6	2.8
20	Basic Civil Engineering Lab	2.2	-	1.4
21	Workshop	2.4	1.6	3
22	Programming For Problem Solving Using 'Python' Lab	1.8	1.6	-
23	Data Structure Using 'C'		1	-

24	Mechanics Of Solid	2.4	2.4	2
25	Fluid Mechanics And Hydraulic Machines	2	2.6	1
26	Geotechnical Engineering	2.20	2.40	1
27	Surveying	2.4	2.4	2
28	Employability Skill-I	-	-	2.00
29	Environmental Science & Engineering	-	1.8	2.2
30	Universal Human Values	-	1.8	2
31	Fluid Mechanics & Hydraulic Machines Lab	2	2.4	1
32	Data Structure Using 'C' Lab	3	-	3
33	Geotechnical Engineering Lab	2.8	2.6	1.6
34	Survey Field Work	2.8	2.6	1.6
35	Engineering Mathematics III	1.8	2	-
36	Structural Analysis-I	1	2.8	2.6
37	Transportation Engineering-I	1	2.8	2.6
38	Water And Waste Water Engineering	1	3	2.4
39	Employability Skill-II	1	2	1.4
40	Concrete Technology	1	2.8	2.6
41	Engineering Economics And Costing	-	1	-

42	Constitution Of India	-	-	1
43	Transportation Engineering-Lab	1	2.8	2.6
44	Environmental Engineering Lab	1	2.8	2.6
45	Civil Engineering Drawing	3	2	1.6
46	Mini Project I	3	2.4	2
47	Structural Analysis-II	2	1.6	2.2
48	Design Of Concrete Structures	2.2	2	2.4
49	Hydrology And Open Channel Hydraulics	2	1.4	2.4
50	Foundation Engineering	2.4	1.2	2
51	Solid Waste Management	1.8	2	2.6
52	Employability Skill-III	1.8	1.2	2.8
53	Essence Of Indian Knowledge And Tradition-I	-	1.6	2.8
54	Structural Engineering Lab	2.4	1.6	2.4
55	Design Of Concrete Structures Practice	2.4	1.4	2.4
56	Concrete Technology Lab	2	1.2	2.6
57	Evaluation Of Summer	2	1.2	2.6
58	Internship Mini Project II	2.2	1.6	2.0

59	Dagian Of Staal			
39	Design Of Steel Structures	2.4	2.2	2.6
60	Irrigation Engineering & Hydraulic Structures	2.20	2.20	1.33
61	Estimation And Professional Practice	2.4	2.2	2.6
62	Earthquake Engineering	2.4	2.4	2.6
63	Water Resource Planning And Management	2.6	2.2	2.8
64	Internet Of Things	2.4	2.2	2.4
65	Employability Skill-IV	-	-	2.00
66	Hydraulic Structures Design Practice	2	1.4	2.6
67	Design Of Steel Structures Practice	2	1.6	2.6
68	Seminar	2	2	2.6
69	Mini Project-III	2	1.4	2.6
70	Organizational Behaviour	-	1.4	1.2
71	Transportation Engineering–II	2.2	1.6	-
72	Pre-Stressed Concrete	1.6	2.6	-
73	Disaster Management	0	2.8	-
74	Entrepreneurship Development	-	2.4	3
75	Construction Equipment And Planning Management	1.6	2.4	-

76	Industrial Lecture And Visit	1.4	2.6	-
77	Summer Internship	1.4	2.6	-
78	Comprehensive Viva Voce	2	2.8	-
79	Minor Project	1.8	2.8	-
80	Major Project	1.8	2.8	-
81	Internship	1.4	2.6	-
82	Project Vivavoice	2	2.8	-
	Average	1.98	2.08	2.15
	Target	1.58	1.66	1.72

Attainment matrix

Sl.n	Subject name												
0		PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PO12
		1	2	3	4	5	5	7	8	9	0	1	2
1	Engineering Mathematics - I	2.3	2.3	2.1	2	2	1	1	1	1.2	1.5	1.6 9	2
2	Engineering Physics	1.9 5	1.5	1.2	1.6 5	1.6 5	1.0	0.9	-	-	-	-	1.5
3	Basic Electrical Engineering	1.8	1.0	1.5	1.6	2.1	-	-	-	-	-	-	1.0
4	Basic Mechanical Engineering	1.6	1.8	2.0	1.4	2.0	1	-	1	-	1	-	2.1
5	Communicati ve English	-	-	-	-	-	1.6 9	1.5 2	2.3	2.5	2.5	1.6 9	2.1
6	Physics Lab	1.1 8	1.1	1.0	1.3	0.5 9	0.4 4	1	-	ı	-	ı	-
7	Basic Electrical Engineering Lab	1.4	1.0	1.0 2	1.0 2	1.1	1.0	1.0	-	1.8	1.1	-	1.0

8	Basic Mechanical Engineering Lab	1.1 7	1.0	1.1	1.0 2	1.0 2	-	-	-	2.0	1.9 0	1.1 7	-
9	Engineering Graphics & Design Lab	2.2	0.8 9	1.6	0.7 4	1.0	2.2	-	-	0.7 4	0.3	-	1.3
10	English Language Laboratory	-	-	-	-	-	1.4	1.4	1.4	2.2	2.2	2.2	1.6
11	Engineering Mathematics II	1.8	1.8	1.8	1.5	-	-	-	-	-	-	-	-
12	Engineering Chemistry	2.2 6	1.5 1	2.2 6	2.2 6	2.2 6	1.5	1.5	-	-	0.7 5	0.7 5	2.2
13	Basic Electronics Engineering	2.2	1.9 4	1.4 9	1.3	1.4 9	0.7 5	0.7 5	0.7 5	1.3	0.9	0.9	1.4
14	Basic Civil Engineering	2.2	1.3 4	0.8 9	1.0	1.7 8	-	-	-	1.0 4	1.3 4	0.7 4	1.7
15	Programming For Problem Solving Using 'C'	2.0	2.2	1.9	1.4 7	2.0	-	-	-	-	-	-	2.2
16	Engineering Mechanics	2.3	2.1	2.1	1.8	1.9 0	1.4	1.1	-	-	-	1.2 7	1.2 7
17	Business Communicati on And Life Skills	-	-	-	-	-	1.6 9	1.5	2.3	2.5	2.5	1.6	2.2
18	Chemistry Lab	1.5	1.5	1.1 5	1.7	1.7	0.8 6	0.2 9	0.2 9	1.2 9	1.1	0.2 9	0.8 6
19	Basic Electronics Engineering Lab	2.2	1.9	1.9	1.6 4	2.0	-	-	-	0.8	0.8	-	1.9
20	Basic Civil Engineering Lab	2.2	0.8	1.6	0.7	1.4 7	2.2	-	-	0.7	0.3	-	1.3

21	Workshop	1.4	1.2	1.8	1.1	1.7 1	1.1	1.1	-	2.0	1.8	-	1.8
22	Programming For Problem Solving Using 'Python' Lab	2.1	1.5	1.7	1.5	1.8	-	-	-	0.8 6	0.7	1.7	1
23	Data Structure Using 'C'	1.9	2.0	2.4	1.9	0.8	0.9 6	-	-	-	-	-	0.6
24	Mechanics Of Solid	2.2	2.0	2.2	1.7 7	1.4 7	1.0	1.1	0.7 4	0.7 4	0.7 4	1.1 8	2.2
25	Fluid Mechanics And Hydraulic Machines	2.3	2.3	2.1	2.0	1.5	1.0	1.2	1.1 7	0.7	0.7	1.2	2.3
26	Geotechnical Engineering	2.1	1.9 7	1.8	1.6 6	1.7 0	1.2	1.2	-	-	-	1.1	1.3
27	Surveying	2.4	2.4	2.0	2.0	1.7	1.7	1.6	0.8	0.8		1.2	2.4
28	Employability Skill-II	-	-	-	-	-	1.6 9	1.5	2.3	2.5	2.5	1.6 9	2.2
29	Environmenta 1 Science & Engineering	-	-	-	-	-	2.5	2.5	2.0	1.5	1.5	1.7	2.5
30	Universal Human Values	-	-	-	-	-	1.9 8	2.2	1.8	1.6	1.5	1.8	1.9
31	Fluid Mechanics & Hydraulic Machines Lab	1.3	1.1	0.8	1.0	0.8	0.7	0.4	0.6	0.4	0.4	1.0	1.1
32	Data Structure Using 'C' Lab	1.0	1.6	1.5	-	-	0.6	-	-	-	-	-	0.4
33	Geotechnical Engineering Lab	1.6 7	1.4	1.1	1.3	1.1	0.8	0.5 6	0.8	0.5 6	0.5 6	1.3	1.4
34	Survey Field Work	1.5 9	1.5 9	1.4 7	1.2	1.4 7	0.5 7	0.5 7	1.7	1.0	0.9 1	0.7 9	1.7

35	Engineering Mathematics III	1.7	1.7	1.5	1.5	-	-	-	-	-	-	-	-
36	Structural Analysis-I	2.4	2.2 7	2.4	2.4	2.0	1.7 4	1.2	-	1.7 4	0.8 7	1.0	2.4
37	Transportati on Engineering -I	2.4	1.9	2.0	2.4	2.0	1.6	1.2	-	1.6 1	0.8	0.9	2.2 5
38	Water And Waste Water Engineering	2.5	2.1	2.3	2.3	2.3	1.5	1.3	-	1.3	_	1.0	2.1
39	Employability Skill-II	-	-	-	-	-	2.0	3	2.1	1.7 0	2.3	1.8 6	1.5 5
40	Concrete Technology	2.4	2.0	2.0	2.4	2.0	1.6 1	1.2 9	-	-	0.8	0.9 6	2.2 5
41	Engineering Economics And Costing	-	-	-	-	-	-	1.1	1.1	0.9	0.9	0.8	1.1
42	Constitution Of India	-	-	-	-	-	1.4	0.7	2.1	0.7	1.4	0.7	0.7
43	Transportatio n Engineering- Lab	2.4	1.9	2.0	2.4	2.0	1.6	1.2	-	1.6	0.8	0.9	2.2
44	Environmenta 1 Engineering Lab	2.4	1.9	2.0	2.4	2.0	1.6	1.2	-	1.2	0.8	0.9 6	2.2
45	Civil Engineering Drawing	1.5	0.9	0.7	0.7	-	-	-	-	1.0	-	1.5	-
46	Mini Project I	2.4	2.4	2.0	2.0	1.9 6	2.4	1.6 1	1.7 7	2.4	1.9	2.4	1.9
47	Structural Analysis-II	1.8	2.3	2	1.3	1.1 6	2	-	1.6 6	-	-	1.6 6	1
48	Design Of Concrete Structures	2.0	2.0	2.3	1.8	1.5	1.8	-	2.0	1.6 7	-	-	1.0

49	Hydrology And Open												
	Channel Hydraulics	2.2	2.5	2.3	1.3	1.3	2.0	-	-	1.1	-	_	1.3
50	Foundation Engineering	2.1	2.1	1.9 8	1.6 5	0.8	1.9 8	1.9 8	-	1.1	-	-	1.3
51	Solid Waste Management	2.3	2.1	2.3	1.6 8	1.5	1.8	-	1.6	-	-	-	1.3
52	Employability Skill-III	-	-	-	-	-	1.8	3	1.8	1.3	3	3	0.9
53	Essence Of Indian Knowledge And Tradition-I	-	-	-	-	-	1.6	2.1	2.3	1.3	2.1	1.4	0.9
54	Structural Engineering Lab	2.1	2.1	2.1	1.7	1.1	1.9	-	1.6 2	1.6 2	-	_	0.9 7
55	Design Of Concrete Structures Practice	2.3	2.1	2.3	1.4	1.4	1.9	-	1.9	1.3	-	-	0.9
56	Concrete Technology Lab	2.2	2.3	2.3	1.3	0.8	2.0	-	1.6	1.1	-	-	1.0
57	Evaluation Of Summer Internship	2.3	2.3	2.2	1.7	2.2	2.0	0.8	1.7	1.7	-	1.0	1.0
58	Mini Project II	1.7	2.0	1.7	1.2 6	1.1	1.8 9	-	1.5	1.1	-	-	0.9 4
59	Design Of Steel Structures	2.3	2.0	2.2	1.8	1.5	1.8	-	1.8	1.1	_	-	1.1
50	Irrigation Engineering & Hydraulic Structures	1.7	1.7	1.2	1.3	1.2	1.0	0.8	-	-	-	1.2	2.0
61	Estimation And	2.1	1.8	2	1.8	1.3	2	2	-	1.3	-	-	1.5

	Professional Practice												
62	Earthquake Engineering	2.3	1.8 5	2.0	2.0	1.5	1.6	-	-	1.1	-	-	1.3
63	Water Resource Planning And Management	2.3	1.9	1.9	1.6	1.6	1.6	-	-	-	1.4	-	1.4
64	Internet Of Things	2.1	1.6	1.9 6	1.7 9	1.3	1.6	1.7 9	-	-	-	-	1.4 7
65	Employability Skill-IV	-	-	-	-	-	1.6 9	1.5	2.3	2.5	2.5	1.6 9	2.2
66	Hydraulic Structures Design Practice	1.9	1.9	2.2	1.2	1.2	1.9	-	1.6	1.4	-	-	1.2
67	Design Of Steel Structures Practice	1.9	1.9 5	2.1	1.3	1.1	1.7	-	1.6	1.1	-	-	1.1
68	Seminar	1.9	2.2	2.2	1.6	1.4 4	1.9	-	1.6	1.1	-	-	0.9 6
69	Mini Project- III	2.0	2.2	2.0	1.2 6	1.4	1.9 0	-	1.4	0.9 5	-	-	0.9
70	Organizationa 1 Behavior	-	-	-	-	-	0.81	0.81	2.42	2.26	2.26	1.13	2.26
71	Transportatio n Engineering— II	2.2	2.1	2.2	1.9 4	1.9	2.1	1.6	1.4	-	-	-	1.4
72	Pre-Stressed Concrete	2.3	2.1	2.3	1.9 7	1.8 0	2.3	0.0	1.4	0.0	0.1 6	1.4 8	2.3
73	Disaster Management	1.6 7	2.3	2.1	2.3	2.1	0.6 7	1.0	2.5	2.0	2.0	-	1.5
74	Entrepreneurs hip Development	1.5	2.3	2.1	2.0	2.1	0.8	1.1	2.3	2.3	2.0	1.5	2.3
75	Construction Equipment	2.3	2.1	2.3	1.9	1.9 8	0.9 9	0.6 6	0.6 6	1.8	1.6 5	2.3	1.4 9

	And Planning Management												
76	Industrial Lecture And Visit	2.2	2.1	2.2	1.9	1.9 6	1.8	0.8	2.2	-	-	1.1 4	1.9
77	Summer Internship	2.3	2.1 6	2.3	1.9 9	1.9 9	1.8	0.8	2.3	-	1.9 9	-	1.9 9
78	Comprehensi ve Viva Voce	2.2	2.0	2.2	1.9 0	1.9 0	1.1 1	-	1.4	2.2	2.2	2.2	1.4
79	Minor Project	2.3	2.1	2.3	1.9 8	1.9 8	0.6 6	-	2.1	2.3	2.4 7	1.8	0.8
80	Major Project	2.2 6	2.1	2.2 6	1.9 4	1.9 4	-	0.6 5	2.1	2.2 6	2.4	1.7 7	0.8
81	Internship	2.2	2.0	2.2	1.9	1.9	1.7 7	0.8	2.2	-	1.9	-	1.9
82	Project Viva Voice	2.2 7	2.1	2.2	1.9 4	1.9 4	1.1	-	1.4 6	2.2 7	2.2	2.2 7	1.4 6
	Average	2.05	1.89	1.92	1.68	1.63	1.54	1.27	1.70	1.46	1.50	1.41	1.56

PO Attainment Indirect:

Course	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Exit	2.32	2.21	2.13	2.15	2.09	2.39	2.44	2.29	2.50	2.27	2.35	2.29
Student												
Alumni	2.17	1.97	2.11	2.17	2.11	2.23	2.17	2.14	2.40	2.20	2.26	2.14
Feedback												
Parent	2.1	1.98	1.67	2.12	2.04	2.04	1.98	1.68	1.13	2.1	1.41	1.68
Feedback												
Employer	1.49	2.6	2.04	1.95	1.23	1.8	1.9	1.73	1.81	1.9	2.2	2.1
Feedback												
Average	2.02	2.19	1.99	2.1	1.87	2.12	2.12	1.96	1.96	2.12	2.06	2.05

PO Attainment Level:

Course	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2
Indirect Attainment	2.02	2.19	1.99	2.1	1.87	2.12	2.12	1.96	1.96	2.12	2.06	2.05

Direct Attainment	2.05	1.89	1.92	1.68	1.63	1.54	1.27	1.70	1.46	1.50	1.41	1.56
PO Attainmen t Level	2.04	1.95	1.93	1.76	1.68	1.66	1.44	1.75	1.56	1.62	1.54	1.66
Target	2.10	1.94	1.97	1.72	1.67	1.55	1.30	1.71	1.51	1.52	1.44	1.61

PSO Attainment Matrix

Sl.no	Subject name	PSO1	PSO2	PSO3
1	Engineering Mathematics – I	1.54	1.39	-
2	Engineering Physics	0.9	0.9	-
3	Basic Electrical Engineering	2.12	1.82	-
4	Basic Mechanical Engineering	2.03	1.89	1.6
5	Communicative English	-	-	1.69
6	Physics Lab	0.29	1.33	-
7	Basic Electrical Engineering Lab	2.18	1.60	1.02
8	Basic Mechanical Engineering Lab	1.75	1.17	-
9	Engineering Graphics & Design Lab	1.63	-	1.04
10	English Language Laboratory	-	-	1.48
11	Engineering Mathematics II	1.39	1.08	-
12	Engineering Chemistry	0.90	0.90	-
13	Basic Electronics Engineering	2.24	1.34	1.34
14	Basic Civil Engineering	1.64	-	1.49

15	Programming For Problem Solving Using 'C'	1.92	1.77	1.47
16	Engineering Mechanics	1.86	2.02	-
17	Business Communication And Life Skills	-	-	1.69
18	Chemistry Lab	0.29	1.29	-
19	Basic Electronics Engineering Lab	2.23	1.93	2.08
20	Basic Civil Engineering Lab	1.62	-	1.03
21	Workshop	1.71	1.14	2.14
22	Programming For Problem Solving Using 'Python' Lab	-	1.14	-
23	Data Structure Using 'C'	-	0.80	-
24	Mechanics Of Solid	1.77	1.77	1.47
25	Fluid Mechanics And Hydraulic Machines	1.56	2.03	0.78
26	Geotechnical Engineering	1.66	1.82	0.76
27	Surveying	1.928	1.928	1.60
28	Employability Skill-	-	-	1.69
29	Environmental Science & Engineering	-	1.53	1.87
30	Universal Human Values	-	1.37	1.53
31	Fluid Mechanics & Hydraulic Machines Lab	0.88	1.06	0.44
32	Data Structure Using 'C' Lab	1.61	-	1.61

33	Geotechnical			0.00
	Engineering Lab	1.56	1.45	0.89
34	Survey Field Work	1.59	1.47	0.91
35	Engineering Mathematics III	1.28	1.42	-
36	Structural Analysis-	0.87	2.44	2.27
37	Transportation Engineering-I	0.80	2.25	2.09
38	Water And Waste Water Engineering	0.83	2.51	2.00
39	Employability Skill- II	0.77	1.55	1.08
40	Concrete Technology	0.80	2.25	2.09
41	Engineering Economics And Costing	-	0.70	-
42	Constitution Of India	-	-	0.70
43	Transportation Engineering-Lab	0.80	2.25	2.09
44	Environmental Engineering Lab	0.8	2.24	2.08
45	Civil Engineering Drawing	2.34	1.56	1.24
46	Mini Project I	2.42	1.93	1.61
47	Structural Analysis- II	1.66	1.33	1.83
48	Design Of Concrete Structures	1.84	1.67	2.0
49	Hydrology And Open Channel Hydraulics	1.7	1.19	2.04
50	Foundation Engineering	1.98	0.99	1.65
51	Solid Waste Management	1.51	1.68	2.19

52	Employability Skill- III	1.47	0.98	2.29
53	Essence Of Indian Knowledge And Tradition-I	-	1.31	2.30
54	Structural Engineering Lab	1.95	1.30	1.95
55	Design Of Concrete Structures Practice	1.98	1.15	1.98
56	Concrete Technology Lab	1.69	1.01	2.20
57	Evaluation Of Summer Internship	1.7	1.02	2.21
58	Mini Project II	1.73	1.26	1.58
59	Design Of Steel Structures	2.04	1.87	2.21
60	Irrigation Engineering & Hydraulic Structures	1.47	1.47	0.89
61	Estimation And Professional Practice	2	1.83	2.16
62	Earthquake Engineering	2.02	2.02	2.19
63	Water Resource Planning And Management	2.14	1.81	2.31
64	Internet Of Things	1.96	1.79	1.96
65	Employability Skill-IV	-	-	1.69
66	Hydraulic Structures Design Practice	1.60	1.12	2.08
67	Design Of Steel Structures Practice	1.62	1.30	2.11
68	Seminar	1.6	1.6	2.08
69	Mini Project-III	1.58	1.11	2.06

70	Organizational Behavior	-	1.13	0.97
71	Transportation Engineering–II	1.78	1.30	-
72	Pre-Stressed Concrete	1.31	2.13	0.00
73	Disaster Management	-	2.34	-
74	Entrepreneurship Development	-	2.01	2.51
75	Construction Equipment And Planning Management	1.32	1.98	-
76	Industrial Lecture And Visit	1.14	2.12	-
77	Summer Internship	1.16	2.16	-
78	Comprehensive Viva Voce	1.58	2.21	-
79	Minor Project	1.48	2.31	-
80	Major Project	1.45	2.26	-
81	Internship	1.12	2.09	-
82	Project Viva Voice	1.62	2.27	-
	Average	1.55	1.61	1.67

PSO Attainment Indirect:

Survey	PSO1	PSO2	PSO3
Employer Feedback	2.3	2.2	1.8
Exit Student	2.5	2.4	2.2
Alumni Feedback	2.4	2.2	2.4
Parent Feedback	1.98	2.34	2.86
Average	2.30	2.28	2.32

PSO Attainment Level:

Course	PSO1	PSO2	PSO3
Direct Attainment	1.55	1.61	1.67
Indirect Attainment	2.30	2.28	2.32
PSO Attainment	1.70	1.74	1.80

Level			
Target	1.58	1.66	1.72

CONTINUOUS IMPROVEMENT

POs Attainment Levels and Actions for Improvement- (2023-24)

POs	Target Level	Attainment Level	Observations
PO 1 : Engineering	Knowledge		
PO 1	2.10	2.04	We have achieved the target.

Action1: More practical application of course outcome has to be included to improve the attainment level of PO1.

Action 2: Unit wise question bank should be improved and at-least one class should be allocated for preparing the students for more numerical questions in respective subject.

Action 3: More problems are given for practice.

PO 2 : Problem Ana	PO 2 : Problem Analysis					
PO 2	1.94	1.95	We have achieved the target.			

Action 1: Objective Question Bank should be improved and at-least one class should be allocated for Preparing the students for objective questions as quiz.

Action 2: Number of tutorial classes were conducted during semester.

Action 3: Beyond syllabus for different subjects discussed by our faculties to meet the requirements.

Action 4: University questions should be solved in tutorial classes to improve the performance in the external examination.

Action 5: More problems were given for practice.

PO 3 : Design/development of Solutions					
PO 3	1.97	1.93	We have achieved the target.		

Action1: Well, defined Objective Question Bank of different subjects be developed by faculty members.

Action 2: Hands on session need to be improved, to improve students' performance in the internal examination.

Action 3: More design classes to be taught in tutorial classes.

Action 4: More problems will be given for assignment practice.

PO 4 : Conduct Investigations of Complex Problems

PO 4	1.72	1.76	We have achieved the
			target

Action1: Add on Course on Research papers included for final year students.

Action 2: More project classes conducted to improve attainment level.

Action 3: Conduct number of seminars for corresponding subject to attain the level.

Action 4: For developing project skills student's maximum number of industrial visits and internships were conducted by the department.

Action 5: Number of seminars by aluminous and industrial expert conducted by the department to attain the level.

PO 5: Modern Tool Usage

			Tr. : 1 1 .11
			It is observed that the
			attainment level of some of
			the subjects such as
			Structural Engineering,
			Earthquake Engineering
PO 5	1.67	1.68	FMHM, Irrigation
			Engineering and IWMD
			etc. are the targeted level
			which is responsible for
			lowering the average
			attainment level.
Action1: The laboratory ex	periments done by the stud	dents are repeated f	or better understanding.
-	•	•	tion of data through extra tutorial
classes taken by senior pro		•	
Action3: Experts from indu	ustries were invited for addi	tional knowledge.	
PO 6: The Engine	er and Society	 _	
DO 6	1 55	1 66	We have achieved the
PO 6	1.55	1.66	target.
Astion 1. Maguido our stu	dents to salest the projects	hasad an safaty co	
		based on salety col	ncerns and social aspects, such that
they are applicable to soci	•		1
	uestions designed for stude	•	
	rs, webinars on concern sub nt and Sustainability	Ject to meet attaini	ment level.
I O / . Environme	it and Sustamasinty		
PO 7	1.30	1.44	We have achieved the
ru /	1.30	1.44	target.
 Action1: Special classes we	_ ere taken to demonstrate th	_ <u> </u> nese aspects	
	ven exposure to the social a		teraction with the public.
			idents in their activities to get better
understanding.			3
PO 8 : Ethics			
	<u> </u>	Т	W. L
PO 8	1.71	1.75	We have achieved the target.
-			1
	dents to select more projec	its related to ethics a	and creating awareness.
Action1: We guide our stu	dents to select more projec workshops was being cond		_
Action1: We guide our stud Action 2: More number of	workshops was being cond	ucted on ethical issu	ues of professional studies.
Action1: We guide our stud Action 2: More number of	workshops was being cond	ucted on ethical issu	ues of professional studies.
Action1: We guide our stud Action 2: More number of Action 3: Conducted semi	workshops was being cond inars and guest lectures or	ucted on ethical issu	ues of professional studies.
Action1: We guide our stud Action 2: More number of Action 3: Conducted semi attainment level.	workshops was being cond inars and guest lectures or	ucted on ethical issu	=

Action 2: Workshops conducted on entrepreneurship to motivate students to be a entrepreneur.

Action 3: More number of seminars on project development were conducted to meet the requirements.

Action 4: Students should be sent to other colleges/universities to contact higher resource persons.

Action 5: Students should be sent to nearby testing centers to conduct any tests/experiments.

PO 10: Communication

PO 10	1.52	1.62	We have achieved the target.
- Action1: More seminar :	sessions should be conduc	ted to attain PO.	
•	ons, debate session was co ed themselves for intervie	•	dents' performance in the extern
action 3: Seminar on pre	esentation skill and English	communication in techr	nical field has already introduced
mprove the attainment	level.		
PO 11 : Project 1	Management and Financ	e	
PO 11	1.44	1.54	We have achieved the target.
Action1: More seminar :	sessions should be conduc	ted to attain PO.	
•	ons, debate session was cored themselves for intervie	·	dents' performance in the exterr
Action 3: Seminar on pre	esentation skill and English	communication in techr	nical field has already introduced
mprove the attainment	level.		
PO 12 : Life-long	g Learning		
20.44	1.61	1.66	We have achieved the target.
PO 12			
	study tour and industrial v	 visit for student.	
action1: Organize more	•		toCAD, Staad Pro, Revit, 3D Max.
Action1: Organize more Action 2: Organize Indus	strial training on advanced	software program: - Aut	toCAD, Staad Pro, Revit, 3D Max. - Project) for final year students

PSOs Attainment Levels and Actions for Improvement- (2023-24)

Attainment Level

Observations

Target Level

PSOs

	_		ly the latest Design procedures for
			vare. Construction being the hear
	iopment, latest constri	uction procedures is to i	be adopted using latest equipment
and machineries.			
PSO 1	1.58	1.70	We have not achieved
P3U 1		1.70	the target.
Action 1: Seminar was cond	ucted for IV-year Stud	ents.	
Action 2: Gather knowledg	e related to the Civil So	oftware Tools such as Au	utoCAD, Staad Pro, GIS , GPS , Tota
Station, MS – Project, 3D -	Printing.		
Action 3: Remedial classes	were also organized.		
PSO 2 : Innovative Skill: A	n ability to explore ne	w ideas in the field of	Civil Engineering with the help of
Development of high-qual	ity technical knowledg	e through application of	f software and field observed data
BCO 3	4.66	4.74	We have achieved the
PSO 2	1.66	1.74	target.

Action1: Special lectures were conducted for counseling the students regarding the scope of Civil and Construction Engineering entrepreneurship those are huge and attractive.

Action 2: Students having right attitude of being entrepreneur were encouraged.

Action 3: The interested were given scope to avail the facilities of institutional incubation cell and Departmental laboratories to research and development.

Action 4: Awareness camps were organized for Civil Engineering entrepreneurship with involvement of state MSME.

PSO 3: Civil Engineering Entrepreneurships: Scope of Civil and Construction Engineering Entrepreneurships are huge and attractive. Students of having right attitude of being entrepreneurs are encouraged and they can avail Institutional incubation cells and MSME inspiration.

PSO 3	1.72	1.80	We have achieved the target.

Action 1: Workshop should be conducted on planning and layout to improve the student knowledge levels.

Action 2: Students are assigned with more minor projects.

Action 3: Guest lecturer sessions were arranged in regular interval to give basic knowledge.